Mixed-State Ionic Beams: An Effective Tool for Collision Dynamics Investigations

The use of mixed-state ionic beams in collision dynamics investigations is examined. Using high resolution Auger projectile spectroscopy involving He-like (<inline-formula> <math display="inline"> <semantics> <mrow> <mn>1</mn> <msup> <mi>s<...

Full description

Bibliographic Details
Main Authors: Emmanouil P. Benis, Ioannis Madesis, Angelos Laoutaris, Stefanos Nanos, Theo J. M. Zouros
Format: Article
Language:English
Published: MDPI AG 2018-11-01
Series:Atoms
Subjects:
Online Access:https://www.mdpi.com/2218-2004/6/4/66
id doaj-9dbfaf20bc004db59603b9a19e447b00
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Emmanouil P. Benis
Ioannis Madesis
Angelos Laoutaris
Stefanos Nanos
Theo J. M. Zouros
spellingShingle Emmanouil P. Benis
Ioannis Madesis
Angelos Laoutaris
Stefanos Nanos
Theo J. M. Zouros
Mixed-State Ionic Beams: An Effective Tool for Collision Dynamics Investigations
Atoms
zero-degree Auger projectile spectroscopy
mixed-state beams
metastable states
He-like states
Li-like states
Be-like states
cascade feeding
electron transfer excitation
electron excitation
electron transfer
hollow states
SIMION
author_facet Emmanouil P. Benis
Ioannis Madesis
Angelos Laoutaris
Stefanos Nanos
Theo J. M. Zouros
author_sort Emmanouil P. Benis
title Mixed-State Ionic Beams: An Effective Tool for Collision Dynamics Investigations
title_short Mixed-State Ionic Beams: An Effective Tool for Collision Dynamics Investigations
title_full Mixed-State Ionic Beams: An Effective Tool for Collision Dynamics Investigations
title_fullStr Mixed-State Ionic Beams: An Effective Tool for Collision Dynamics Investigations
title_full_unstemmed Mixed-State Ionic Beams: An Effective Tool for Collision Dynamics Investigations
title_sort mixed-state ionic beams: an effective tool for collision dynamics investigations
publisher MDPI AG
series Atoms
issn 2218-2004
publishDate 2018-11-01
description The use of mixed-state ionic beams in collision dynamics investigations is examined. Using high resolution Auger projectile spectroscopy involving He-like (<inline-formula> <math display="inline"> <semantics> <mrow> <mn>1</mn> <msup> <mi>s</mi> <mn>2</mn> </msup> <msup> <mspace width="0.166667em"></mspace> <mn>1</mn> </msup> <mspace width="-0.166667em"></mspace> <mi>S</mi> <mo>,</mo> <mn>1</mn> <mi>s</mi> <mn>2</mn> <mi>s</mi> <msup> <mspace width="0.166667em"></mspace> <mrow> <mn>3</mn> <mo>,</mo> <mn>1</mn> </mrow> </msup> <mspace width="-0.166667em"></mspace> <mi>S</mi> </mrow> </semantics> </math> </inline-formula>) mixed-state beams, the spectrum contributions of the <inline-formula> <math display="inline"> <semantics> <mrow> <mn>1</mn> <mi>s</mi> <mn>2</mn> <mi>s</mi> <msup> <mspace width="0.166667em"></mspace> <mn>3</mn> </msup> <mspace width="-0.166667em"></mspace> <mi>S</mi> </mrow> </semantics> </math> </inline-formula> metastable beam component is effectively separated and clearly identified. This is performed with a technique that exploits two independent spectrum measurements under the same collision conditions, but with ions having quite different metastable fractions, judiciously selected by varying the ion beam charge-stripping conditions. Details of the technique are presented together with characteristic examples. In collisions of 4 MeV B<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mrow> <mn>3</mn> <mo>+</mo> </mrow> </msup> </semantics> </math> </inline-formula> with H<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>2</mn> </msub> </semantics> </math> </inline-formula> targets, the Auger electron spectrum of the separated <inline-formula> <math display="inline"> <semantics> <mrow> <mn>1</mn> <mi>s</mi> <mn>2</mn> <mi>s</mi> <msup> <mspace width="0.166667em"></mspace> <mn>3</mn> </msup> <mi>S</mi> <mspace width="-0.166667em"></mspace> </mrow> </semantics> </math> </inline-formula> boron beam component allows for a detailed analysis of the formation of the <inline-formula> <math display="inline"> <semantics> <mrow> <mn>1</mn> <mi>s</mi> <mn>2</mn> <mi>s</mi> <mrow> <msup> <mo>(</mo> <mn>3</mn> </msup> <mspace width="-0.166667em"></mspace> <mi>S</mi> <mo>)</mo> </mrow> <mi>n</mi> <mi>l</mi> <msup> <mspace width="0.166667em"></mspace> <mn>2</mn> </msup> <mspace width="-0.166667em"></mspace> <mi>L</mi> </mrow> </semantics> </math> </inline-formula> states by direct <inline-formula> <math display="inline"> <semantics> <mrow> <mi>n</mi> <mi>l</mi> </mrow> </semantics> </math> </inline-formula> transfer. In addition, the production of hollow <inline-formula> <math display="inline"> <semantics> <mrow> <mn>2</mn> <mi>s</mi> <mn>2</mn> <mi>p</mi> <msup> <mspace width="0.166667em"></mspace> <mrow> <mn>1</mn> <mo>,</mo> <mn>3</mn> </mrow> </msup> <mspace width="-0.166667em"></mspace> <mi>P</mi> </mrow> </semantics> </math> </inline-formula> doubly- and <inline-formula> <math display="inline"> <semantics> <mrow> <mn>2</mn> <mi>s</mi> <mn>2</mn> <msup> <mi>p</mi> <mn>2</mn> </msup> <msup> <mspace width="0.166667em"></mspace> <mn>2</mn> </msup> <mspace width="-0.166667em"></mspace> <mi>D</mi> </mrow> </semantics> </math> </inline-formula> triply-excited states, by direct excitation and transfer-excitation processes, respectively, can also be independently studied. In similar mixed-state beam collisions of 15 MeV C<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mrow> <mn>4</mn> <mo>+</mo> </mrow> </msup> </semantics> </math> </inline-formula> with H<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>2</mn> </msub> </semantics> </math> </inline-formula>, He, Ne and Ar targets, the contributions of the <inline-formula> <math display="inline"> <semantics> <mrow> <mn>1</mn> <msup> <mi>s</mi> <mn>2</mn> </msup> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <mn>1</mn> <mi>s</mi> <mn>2</mn> <mi>s</mi> <msup> <mspace width="0.166667em"></mspace> <mrow> <mn>3</mn> <mo>,</mo> <mn>1</mn> </mrow> </msup> <mi>S</mi> </mrow> </semantics> </math> </inline-formula> beam components to the formation of the <inline-formula> <math display="inline"> <semantics> <mrow> <mn>2</mn> <mi>s</mi> <mn>2</mn> <mi>p</mi> <msup> <mspace width="0.166667em"></mspace> <mrow> <mn>3</mn> <mo>,</mo> <mn>1</mn> </mrow> </msup> <mspace width="-0.166667em"></mspace> <mi>P</mi> </mrow> </semantics> </math> </inline-formula> states by double-excitation, <inline-formula> <math display="inline"> <semantics> <mrow> <mn>1</mn> <mi>s</mi> <mo>&#8594;</mo> <mn>2</mn> <mi>p</mi> </mrow> </semantics> </math> </inline-formula> excitation and transfer-loss processes can be clearly identified, facilitating comparisons with theoretical calculations.
topic zero-degree Auger projectile spectroscopy
mixed-state beams
metastable states
He-like states
Li-like states
Be-like states
cascade feeding
electron transfer excitation
electron excitation
electron transfer
hollow states
SIMION
url https://www.mdpi.com/2218-2004/6/4/66
work_keys_str_mv AT emmanouilpbenis mixedstateionicbeamsaneffectivetoolforcollisiondynamicsinvestigations
AT ioannismadesis mixedstateionicbeamsaneffectivetoolforcollisiondynamicsinvestigations
AT angeloslaoutaris mixedstateionicbeamsaneffectivetoolforcollisiondynamicsinvestigations
AT stefanosnanos mixedstateionicbeamsaneffectivetoolforcollisiondynamicsinvestigations
AT theojmzouros mixedstateionicbeamsaneffectivetoolforcollisiondynamicsinvestigations
_version_ 1716797048003493888
spelling doaj-9dbfaf20bc004db59603b9a19e447b002020-11-24T20:53:34ZengMDPI AGAtoms2218-20042018-11-01646610.3390/atoms6040066atoms6040066Mixed-State Ionic Beams: An Effective Tool for Collision Dynamics InvestigationsEmmanouil P. Benis0Ioannis Madesis1Angelos Laoutaris2Stefanos Nanos3Theo J. M. Zouros4Department of Physics, University of Ioannina, GR 45110 Ioannina, GreeceDepartment of Physics, University of Crete, Voutes Campus GR 71003 Heraklion, GreeceDepartment of Physics, University of Crete, Voutes Campus GR 71003 Heraklion, GreeceDepartment of Physics, University of Ioannina, GR 45110 Ioannina, GreeceDepartment of Physics, University of Crete, Voutes Campus GR 71003 Heraklion, GreeceThe use of mixed-state ionic beams in collision dynamics investigations is examined. Using high resolution Auger projectile spectroscopy involving He-like (<inline-formula> <math display="inline"> <semantics> <mrow> <mn>1</mn> <msup> <mi>s</mi> <mn>2</mn> </msup> <msup> <mspace width="0.166667em"></mspace> <mn>1</mn> </msup> <mspace width="-0.166667em"></mspace> <mi>S</mi> <mo>,</mo> <mn>1</mn> <mi>s</mi> <mn>2</mn> <mi>s</mi> <msup> <mspace width="0.166667em"></mspace> <mrow> <mn>3</mn> <mo>,</mo> <mn>1</mn> </mrow> </msup> <mspace width="-0.166667em"></mspace> <mi>S</mi> </mrow> </semantics> </math> </inline-formula>) mixed-state beams, the spectrum contributions of the <inline-formula> <math display="inline"> <semantics> <mrow> <mn>1</mn> <mi>s</mi> <mn>2</mn> <mi>s</mi> <msup> <mspace width="0.166667em"></mspace> <mn>3</mn> </msup> <mspace width="-0.166667em"></mspace> <mi>S</mi> </mrow> </semantics> </math> </inline-formula> metastable beam component is effectively separated and clearly identified. This is performed with a technique that exploits two independent spectrum measurements under the same collision conditions, but with ions having quite different metastable fractions, judiciously selected by varying the ion beam charge-stripping conditions. Details of the technique are presented together with characteristic examples. In collisions of 4 MeV B<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mrow> <mn>3</mn> <mo>+</mo> </mrow> </msup> </semantics> </math> </inline-formula> with H<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>2</mn> </msub> </semantics> </math> </inline-formula> targets, the Auger electron spectrum of the separated <inline-formula> <math display="inline"> <semantics> <mrow> <mn>1</mn> <mi>s</mi> <mn>2</mn> <mi>s</mi> <msup> <mspace width="0.166667em"></mspace> <mn>3</mn> </msup> <mi>S</mi> <mspace width="-0.166667em"></mspace> </mrow> </semantics> </math> </inline-formula> boron beam component allows for a detailed analysis of the formation of the <inline-formula> <math display="inline"> <semantics> <mrow> <mn>1</mn> <mi>s</mi> <mn>2</mn> <mi>s</mi> <mrow> <msup> <mo>(</mo> <mn>3</mn> </msup> <mspace width="-0.166667em"></mspace> <mi>S</mi> <mo>)</mo> </mrow> <mi>n</mi> <mi>l</mi> <msup> <mspace width="0.166667em"></mspace> <mn>2</mn> </msup> <mspace width="-0.166667em"></mspace> <mi>L</mi> </mrow> </semantics> </math> </inline-formula> states by direct <inline-formula> <math display="inline"> <semantics> <mrow> <mi>n</mi> <mi>l</mi> </mrow> </semantics> </math> </inline-formula> transfer. In addition, the production of hollow <inline-formula> <math display="inline"> <semantics> <mrow> <mn>2</mn> <mi>s</mi> <mn>2</mn> <mi>p</mi> <msup> <mspace width="0.166667em"></mspace> <mrow> <mn>1</mn> <mo>,</mo> <mn>3</mn> </mrow> </msup> <mspace width="-0.166667em"></mspace> <mi>P</mi> </mrow> </semantics> </math> </inline-formula> doubly- and <inline-formula> <math display="inline"> <semantics> <mrow> <mn>2</mn> <mi>s</mi> <mn>2</mn> <msup> <mi>p</mi> <mn>2</mn> </msup> <msup> <mspace width="0.166667em"></mspace> <mn>2</mn> </msup> <mspace width="-0.166667em"></mspace> <mi>D</mi> </mrow> </semantics> </math> </inline-formula> triply-excited states, by direct excitation and transfer-excitation processes, respectively, can also be independently studied. In similar mixed-state beam collisions of 15 MeV C<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mrow> <mn>4</mn> <mo>+</mo> </mrow> </msup> </semantics> </math> </inline-formula> with H<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>2</mn> </msub> </semantics> </math> </inline-formula>, He, Ne and Ar targets, the contributions of the <inline-formula> <math display="inline"> <semantics> <mrow> <mn>1</mn> <msup> <mi>s</mi> <mn>2</mn> </msup> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <mn>1</mn> <mi>s</mi> <mn>2</mn> <mi>s</mi> <msup> <mspace width="0.166667em"></mspace> <mrow> <mn>3</mn> <mo>,</mo> <mn>1</mn> </mrow> </msup> <mi>S</mi> </mrow> </semantics> </math> </inline-formula> beam components to the formation of the <inline-formula> <math display="inline"> <semantics> <mrow> <mn>2</mn> <mi>s</mi> <mn>2</mn> <mi>p</mi> <msup> <mspace width="0.166667em"></mspace> <mrow> <mn>3</mn> <mo>,</mo> <mn>1</mn> </mrow> </msup> <mspace width="-0.166667em"></mspace> <mi>P</mi> </mrow> </semantics> </math> </inline-formula> states by double-excitation, <inline-formula> <math display="inline"> <semantics> <mrow> <mn>1</mn> <mi>s</mi> <mo>&#8594;</mo> <mn>2</mn> <mi>p</mi> </mrow> </semantics> </math> </inline-formula> excitation and transfer-loss processes can be clearly identified, facilitating comparisons with theoretical calculations.https://www.mdpi.com/2218-2004/6/4/66zero-degree Auger projectile spectroscopymixed-state beamsmetastable statesHe-like statesLi-like statesBe-like statescascade feedingelectron transfer excitationelectron excitationelectron transferhollow statesSIMION