Mixed-State Ionic Beams: An Effective Tool for Collision Dynamics Investigations
The use of mixed-state ionic beams in collision dynamics investigations is examined. Using high resolution Auger projectile spectroscopy involving He-like (<inline-formula> <math display="inline"> <semantics> <mrow> <mn>1</mn> <msup> <mi>s<...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2018-11-01
|
Series: | Atoms |
Subjects: | |
Online Access: | https://www.mdpi.com/2218-2004/6/4/66 |
id |
doaj-9dbfaf20bc004db59603b9a19e447b00 |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Emmanouil P. Benis Ioannis Madesis Angelos Laoutaris Stefanos Nanos Theo J. M. Zouros |
spellingShingle |
Emmanouil P. Benis Ioannis Madesis Angelos Laoutaris Stefanos Nanos Theo J. M. Zouros Mixed-State Ionic Beams: An Effective Tool for Collision Dynamics Investigations Atoms zero-degree Auger projectile spectroscopy mixed-state beams metastable states He-like states Li-like states Be-like states cascade feeding electron transfer excitation electron excitation electron transfer hollow states SIMION |
author_facet |
Emmanouil P. Benis Ioannis Madesis Angelos Laoutaris Stefanos Nanos Theo J. M. Zouros |
author_sort |
Emmanouil P. Benis |
title |
Mixed-State Ionic Beams: An Effective Tool for Collision Dynamics Investigations |
title_short |
Mixed-State Ionic Beams: An Effective Tool for Collision Dynamics Investigations |
title_full |
Mixed-State Ionic Beams: An Effective Tool for Collision Dynamics Investigations |
title_fullStr |
Mixed-State Ionic Beams: An Effective Tool for Collision Dynamics Investigations |
title_full_unstemmed |
Mixed-State Ionic Beams: An Effective Tool for Collision Dynamics Investigations |
title_sort |
mixed-state ionic beams: an effective tool for collision dynamics investigations |
publisher |
MDPI AG |
series |
Atoms |
issn |
2218-2004 |
publishDate |
2018-11-01 |
description |
The use of mixed-state ionic beams in collision dynamics investigations is examined. Using high resolution Auger projectile spectroscopy involving He-like (<inline-formula> <math display="inline"> <semantics> <mrow> <mn>1</mn> <msup> <mi>s</mi> <mn>2</mn> </msup> <msup> <mspace width="0.166667em"></mspace> <mn>1</mn> </msup> <mspace width="-0.166667em"></mspace> <mi>S</mi> <mo>,</mo> <mn>1</mn> <mi>s</mi> <mn>2</mn> <mi>s</mi> <msup> <mspace width="0.166667em"></mspace> <mrow> <mn>3</mn> <mo>,</mo> <mn>1</mn> </mrow> </msup> <mspace width="-0.166667em"></mspace> <mi>S</mi> </mrow> </semantics> </math> </inline-formula>) mixed-state beams, the spectrum contributions of the <inline-formula> <math display="inline"> <semantics> <mrow> <mn>1</mn> <mi>s</mi> <mn>2</mn> <mi>s</mi> <msup> <mspace width="0.166667em"></mspace> <mn>3</mn> </msup> <mspace width="-0.166667em"></mspace> <mi>S</mi> </mrow> </semantics> </math> </inline-formula> metastable beam component is effectively separated and clearly identified. This is performed with a technique that exploits two independent spectrum measurements under the same collision conditions, but with ions having quite different metastable fractions, judiciously selected by varying the ion beam charge-stripping conditions. Details of the technique are presented together with characteristic examples. In collisions of 4 MeV B<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mrow> <mn>3</mn> <mo>+</mo> </mrow> </msup> </semantics> </math> </inline-formula> with H<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>2</mn> </msub> </semantics> </math> </inline-formula> targets, the Auger electron spectrum of the separated <inline-formula> <math display="inline"> <semantics> <mrow> <mn>1</mn> <mi>s</mi> <mn>2</mn> <mi>s</mi> <msup> <mspace width="0.166667em"></mspace> <mn>3</mn> </msup> <mi>S</mi> <mspace width="-0.166667em"></mspace> </mrow> </semantics> </math> </inline-formula> boron beam component allows for a detailed analysis of the formation of the <inline-formula> <math display="inline"> <semantics> <mrow> <mn>1</mn> <mi>s</mi> <mn>2</mn> <mi>s</mi> <mrow> <msup> <mo>(</mo> <mn>3</mn> </msup> <mspace width="-0.166667em"></mspace> <mi>S</mi> <mo>)</mo> </mrow> <mi>n</mi> <mi>l</mi> <msup> <mspace width="0.166667em"></mspace> <mn>2</mn> </msup> <mspace width="-0.166667em"></mspace> <mi>L</mi> </mrow> </semantics> </math> </inline-formula> states by direct <inline-formula> <math display="inline"> <semantics> <mrow> <mi>n</mi> <mi>l</mi> </mrow> </semantics> </math> </inline-formula> transfer. In addition, the production of hollow <inline-formula> <math display="inline"> <semantics> <mrow> <mn>2</mn> <mi>s</mi> <mn>2</mn> <mi>p</mi> <msup> <mspace width="0.166667em"></mspace> <mrow> <mn>1</mn> <mo>,</mo> <mn>3</mn> </mrow> </msup> <mspace width="-0.166667em"></mspace> <mi>P</mi> </mrow> </semantics> </math> </inline-formula> doubly- and <inline-formula> <math display="inline"> <semantics> <mrow> <mn>2</mn> <mi>s</mi> <mn>2</mn> <msup> <mi>p</mi> <mn>2</mn> </msup> <msup> <mspace width="0.166667em"></mspace> <mn>2</mn> </msup> <mspace width="-0.166667em"></mspace> <mi>D</mi> </mrow> </semantics> </math> </inline-formula> triply-excited states, by direct excitation and transfer-excitation processes, respectively, can also be independently studied. In similar mixed-state beam collisions of 15 MeV C<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mrow> <mn>4</mn> <mo>+</mo> </mrow> </msup> </semantics> </math> </inline-formula> with H<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>2</mn> </msub> </semantics> </math> </inline-formula>, He, Ne and Ar targets, the contributions of the <inline-formula> <math display="inline"> <semantics> <mrow> <mn>1</mn> <msup> <mi>s</mi> <mn>2</mn> </msup> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <mn>1</mn> <mi>s</mi> <mn>2</mn> <mi>s</mi> <msup> <mspace width="0.166667em"></mspace> <mrow> <mn>3</mn> <mo>,</mo> <mn>1</mn> </mrow> </msup> <mi>S</mi> </mrow> </semantics> </math> </inline-formula> beam components to the formation of the <inline-formula> <math display="inline"> <semantics> <mrow> <mn>2</mn> <mi>s</mi> <mn>2</mn> <mi>p</mi> <msup> <mspace width="0.166667em"></mspace> <mrow> <mn>3</mn> <mo>,</mo> <mn>1</mn> </mrow> </msup> <mspace width="-0.166667em"></mspace> <mi>P</mi> </mrow> </semantics> </math> </inline-formula> states by double-excitation, <inline-formula> <math display="inline"> <semantics> <mrow> <mn>1</mn> <mi>s</mi> <mo>→</mo> <mn>2</mn> <mi>p</mi> </mrow> </semantics> </math> </inline-formula> excitation and transfer-loss processes can be clearly identified, facilitating comparisons with theoretical calculations. |
topic |
zero-degree Auger projectile spectroscopy mixed-state beams metastable states He-like states Li-like states Be-like states cascade feeding electron transfer excitation electron excitation electron transfer hollow states SIMION |
url |
https://www.mdpi.com/2218-2004/6/4/66 |
work_keys_str_mv |
AT emmanouilpbenis mixedstateionicbeamsaneffectivetoolforcollisiondynamicsinvestigations AT ioannismadesis mixedstateionicbeamsaneffectivetoolforcollisiondynamicsinvestigations AT angeloslaoutaris mixedstateionicbeamsaneffectivetoolforcollisiondynamicsinvestigations AT stefanosnanos mixedstateionicbeamsaneffectivetoolforcollisiondynamicsinvestigations AT theojmzouros mixedstateionicbeamsaneffectivetoolforcollisiondynamicsinvestigations |
_version_ |
1716797048003493888 |
spelling |
doaj-9dbfaf20bc004db59603b9a19e447b002020-11-24T20:53:34ZengMDPI AGAtoms2218-20042018-11-01646610.3390/atoms6040066atoms6040066Mixed-State Ionic Beams: An Effective Tool for Collision Dynamics InvestigationsEmmanouil P. Benis0Ioannis Madesis1Angelos Laoutaris2Stefanos Nanos3Theo J. M. Zouros4Department of Physics, University of Ioannina, GR 45110 Ioannina, GreeceDepartment of Physics, University of Crete, Voutes Campus GR 71003 Heraklion, GreeceDepartment of Physics, University of Crete, Voutes Campus GR 71003 Heraklion, GreeceDepartment of Physics, University of Ioannina, GR 45110 Ioannina, GreeceDepartment of Physics, University of Crete, Voutes Campus GR 71003 Heraklion, GreeceThe use of mixed-state ionic beams in collision dynamics investigations is examined. Using high resolution Auger projectile spectroscopy involving He-like (<inline-formula> <math display="inline"> <semantics> <mrow> <mn>1</mn> <msup> <mi>s</mi> <mn>2</mn> </msup> <msup> <mspace width="0.166667em"></mspace> <mn>1</mn> </msup> <mspace width="-0.166667em"></mspace> <mi>S</mi> <mo>,</mo> <mn>1</mn> <mi>s</mi> <mn>2</mn> <mi>s</mi> <msup> <mspace width="0.166667em"></mspace> <mrow> <mn>3</mn> <mo>,</mo> <mn>1</mn> </mrow> </msup> <mspace width="-0.166667em"></mspace> <mi>S</mi> </mrow> </semantics> </math> </inline-formula>) mixed-state beams, the spectrum contributions of the <inline-formula> <math display="inline"> <semantics> <mrow> <mn>1</mn> <mi>s</mi> <mn>2</mn> <mi>s</mi> <msup> <mspace width="0.166667em"></mspace> <mn>3</mn> </msup> <mspace width="-0.166667em"></mspace> <mi>S</mi> </mrow> </semantics> </math> </inline-formula> metastable beam component is effectively separated and clearly identified. This is performed with a technique that exploits two independent spectrum measurements under the same collision conditions, but with ions having quite different metastable fractions, judiciously selected by varying the ion beam charge-stripping conditions. Details of the technique are presented together with characteristic examples. In collisions of 4 MeV B<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mrow> <mn>3</mn> <mo>+</mo> </mrow> </msup> </semantics> </math> </inline-formula> with H<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>2</mn> </msub> </semantics> </math> </inline-formula> targets, the Auger electron spectrum of the separated <inline-formula> <math display="inline"> <semantics> <mrow> <mn>1</mn> <mi>s</mi> <mn>2</mn> <mi>s</mi> <msup> <mspace width="0.166667em"></mspace> <mn>3</mn> </msup> <mi>S</mi> <mspace width="-0.166667em"></mspace> </mrow> </semantics> </math> </inline-formula> boron beam component allows for a detailed analysis of the formation of the <inline-formula> <math display="inline"> <semantics> <mrow> <mn>1</mn> <mi>s</mi> <mn>2</mn> <mi>s</mi> <mrow> <msup> <mo>(</mo> <mn>3</mn> </msup> <mspace width="-0.166667em"></mspace> <mi>S</mi> <mo>)</mo> </mrow> <mi>n</mi> <mi>l</mi> <msup> <mspace width="0.166667em"></mspace> <mn>2</mn> </msup> <mspace width="-0.166667em"></mspace> <mi>L</mi> </mrow> </semantics> </math> </inline-formula> states by direct <inline-formula> <math display="inline"> <semantics> <mrow> <mi>n</mi> <mi>l</mi> </mrow> </semantics> </math> </inline-formula> transfer. In addition, the production of hollow <inline-formula> <math display="inline"> <semantics> <mrow> <mn>2</mn> <mi>s</mi> <mn>2</mn> <mi>p</mi> <msup> <mspace width="0.166667em"></mspace> <mrow> <mn>1</mn> <mo>,</mo> <mn>3</mn> </mrow> </msup> <mspace width="-0.166667em"></mspace> <mi>P</mi> </mrow> </semantics> </math> </inline-formula> doubly- and <inline-formula> <math display="inline"> <semantics> <mrow> <mn>2</mn> <mi>s</mi> <mn>2</mn> <msup> <mi>p</mi> <mn>2</mn> </msup> <msup> <mspace width="0.166667em"></mspace> <mn>2</mn> </msup> <mspace width="-0.166667em"></mspace> <mi>D</mi> </mrow> </semantics> </math> </inline-formula> triply-excited states, by direct excitation and transfer-excitation processes, respectively, can also be independently studied. In similar mixed-state beam collisions of 15 MeV C<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mrow> <mn>4</mn> <mo>+</mo> </mrow> </msup> </semantics> </math> </inline-formula> with H<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>2</mn> </msub> </semantics> </math> </inline-formula>, He, Ne and Ar targets, the contributions of the <inline-formula> <math display="inline"> <semantics> <mrow> <mn>1</mn> <msup> <mi>s</mi> <mn>2</mn> </msup> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <mn>1</mn> <mi>s</mi> <mn>2</mn> <mi>s</mi> <msup> <mspace width="0.166667em"></mspace> <mrow> <mn>3</mn> <mo>,</mo> <mn>1</mn> </mrow> </msup> <mi>S</mi> </mrow> </semantics> </math> </inline-formula> beam components to the formation of the <inline-formula> <math display="inline"> <semantics> <mrow> <mn>2</mn> <mi>s</mi> <mn>2</mn> <mi>p</mi> <msup> <mspace width="0.166667em"></mspace> <mrow> <mn>3</mn> <mo>,</mo> <mn>1</mn> </mrow> </msup> <mspace width="-0.166667em"></mspace> <mi>P</mi> </mrow> </semantics> </math> </inline-formula> states by double-excitation, <inline-formula> <math display="inline"> <semantics> <mrow> <mn>1</mn> <mi>s</mi> <mo>→</mo> <mn>2</mn> <mi>p</mi> </mrow> </semantics> </math> </inline-formula> excitation and transfer-loss processes can be clearly identified, facilitating comparisons with theoretical calculations.https://www.mdpi.com/2218-2004/6/4/66zero-degree Auger projectile spectroscopymixed-state beamsmetastable statesHe-like statesLi-like statesBe-like statescascade feedingelectron transfer excitationelectron excitationelectron transferhollow statesSIMION |