Qualitative properties of monotone linear parabolic operators

When we construct mathematical or numerical models in order to solve a real-life problem, it is important to preserve the characteristic properties of the original process. The models have to possess the equivalents of these properties. Parabolic partial equations generally serve as the mathematical...

Full description

Bibliographic Details
Main Authors: István Faragó, Róbert Horváth
Format: Article
Language:English
Published: University of Szeged 2008-07-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=322
Description
Summary:When we construct mathematical or numerical models in order to solve a real-life problem, it is important to preserve the characteristic properties of the original process. The models have to possess the equivalents of these properties. Parabolic partial equations generally serve as the mathematical models of heat conduction or diffusion processes, where the most important properties are the monotonicity, the nonnegativity preservation and the maximum principles. In this paper, the validity of the equivalents of these qualitative properties are investigated for the second order linear partial differential operator. Conditions are given that guarantee the qualitative properties. On some examples we investigate these conditions.
ISSN:1417-3875
1417-3875