An optimal algorithm for computing angle-constrained spanners
Let <em>S</em> be a set of <em>n</em> points in R<sup><em>d</em></sup> and let <em>t</em>>1 be a real number. A graph <em>G</em>=(<em>S</em>,<em>E</em>) is called a <em>t</em>-spanner f...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Carleton University
2012-11-01
|
Series: | Journal of Computational Geometry |
Online Access: | http://jocg.org/index.php/jocg/article/view/94 |
id |
doaj-9d8f5c1eec9d4f7b9ec5b9851c4c7f16 |
---|---|
record_format |
Article |
spelling |
doaj-9d8f5c1eec9d4f7b9ec5b9851c4c7f162020-11-24T22:31:10ZengCarleton UniversityJournal of Computational Geometry1920-180X2012-11-013110.20382/jocg.v3i1a1032An optimal algorithm for computing angle-constrained spannersPaz CarmiMichiel SmidLet <em>S</em> be a set of <em>n</em> points in R<sup><em>d</em></sup> and let <em>t</em>>1 be a real number. A graph <em>G</em>=(<em>S</em>,<em>E</em>) is called a <em>t</em>-spanner for <em>S</em>, if for any two points <em>p</em> and <em>q</em> in <em>S</em>, the shortest-path distance in <em>G</em> between <em>p</em> and<em>q</em> is at most <em>t</em>|<em>pq</em>|, where |<em>pq</em>| denotes the Euclidean distance between <em>p</em> and <em>q</em>. The graph <em>G</em> is called θ-angle-constrained, if any two distinct edges sharing an endpoint make an angle of at least θ. It is shown that, for any θ with 0<θ<π/3, a θ-angle-constrained <em>t</em>-spanner can be computed in <em>O</em>(<em>n</em>log <em>n</em>) time, where <em>t</em> depends only on θ. For values of θ approaching 0, we have<em>t</em>=1 + <em>O</em>(θ).http://jocg.org/index.php/jocg/article/view/94 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Paz Carmi Michiel Smid |
spellingShingle |
Paz Carmi Michiel Smid An optimal algorithm for computing angle-constrained spanners Journal of Computational Geometry |
author_facet |
Paz Carmi Michiel Smid |
author_sort |
Paz Carmi |
title |
An optimal algorithm for computing angle-constrained spanners |
title_short |
An optimal algorithm for computing angle-constrained spanners |
title_full |
An optimal algorithm for computing angle-constrained spanners |
title_fullStr |
An optimal algorithm for computing angle-constrained spanners |
title_full_unstemmed |
An optimal algorithm for computing angle-constrained spanners |
title_sort |
optimal algorithm for computing angle-constrained spanners |
publisher |
Carleton University |
series |
Journal of Computational Geometry |
issn |
1920-180X |
publishDate |
2012-11-01 |
description |
Let <em>S</em> be a set of <em>n</em> points in R<sup><em>d</em></sup> and let <em>t</em>>1 be a real number. A graph <em>G</em>=(<em>S</em>,<em>E</em>) is called a <em>t</em>-spanner for <em>S</em>, if for any two points <em>p</em> and <em>q</em> in <em>S</em>, the shortest-path distance in <em>G</em> between <em>p</em> and<em>q</em> is at most <em>t</em>|<em>pq</em>|, where |<em>pq</em>| denotes the Euclidean distance between <em>p</em> and <em>q</em>. The graph <em>G</em> is called θ-angle-constrained, if any two distinct edges sharing an endpoint make an angle of at least θ. It is shown that, for any θ with 0<θ<π/3, a θ-angle-constrained <em>t</em>-spanner can be computed in <em>O</em>(<em>n</em>log <em>n</em>) time, where <em>t</em> depends only on θ. For values of θ approaching 0, we have<em>t</em>=1 + <em>O</em>(θ). |
url |
http://jocg.org/index.php/jocg/article/view/94 |
work_keys_str_mv |
AT pazcarmi anoptimalalgorithmforcomputingangleconstrainedspanners AT michielsmid anoptimalalgorithmforcomputingangleconstrainedspanners AT pazcarmi optimalalgorithmforcomputingangleconstrainedspanners AT michielsmid optimalalgorithmforcomputingangleconstrainedspanners |
_version_ |
1725738347629903872 |