Two-step ATP-driven opening of cohesin head

Abstract The cohesin ring is a protein complex composed of four core subunits: Smc1A, Smc3, Rad21 and Stag1/2. It is involved in chromosome segregation, DNA repair, chromatin organization and transcription regulation. Opening of the ring occurs at the “head” structure, formed of the ATPase domains o...

Full description

Bibliographic Details
Main Authors: Íñigo Marcos-Alcalde, Jesús I. Mendieta-Moreno, Beatriz Puisac, María Concepción Gil-Rodríguez, María Hernández-Marcos, Diego Soler-Polo, Feliciano J. Ramos, José Ortega, Juan Pié, Jesús Mendieta, Paulino Gómez-Puertas
Format: Article
Language:English
Published: Nature Publishing Group 2017-06-01
Series:Scientific Reports
Online Access:https://doi.org/10.1038/s41598-017-03118-9
id doaj-9d8b866162dc4999b46b4c8eaf6a54fb
record_format Article
spelling doaj-9d8b866162dc4999b46b4c8eaf6a54fb2020-12-08T00:15:00ZengNature Publishing GroupScientific Reports2045-23222017-06-017111410.1038/s41598-017-03118-9Two-step ATP-driven opening of cohesin headÍñigo Marcos-Alcalde0Jesús I. Mendieta-Moreno1Beatriz Puisac2María Concepción Gil-Rodríguez3María Hernández-Marcos4Diego Soler-Polo5Feliciano J. Ramos6José Ortega7Juan Pié8Jesús Mendieta9Paulino Gómez-Puertas10Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM)Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM)Unidad de Genética Clínica y Genómica Funcional, Departamento de Farmacología-Fisiología y Departamento de Pediatría, Hospital Clínico Universitario “Lozano Blesa”, Facultad de Medicina, Universidad de Zaragoza, ISS-Aragon and CIBERER-GCV02Unidad de Genética Clínica y Genómica Funcional, Departamento de Farmacología-Fisiología y Departamento de Pediatría, Hospital Clínico Universitario “Lozano Blesa”, Facultad de Medicina, Universidad de Zaragoza, ISS-Aragon and CIBERER-GCV02Unidad de Genética Clínica y Genómica Funcional, Departamento de Farmacología-Fisiología y Departamento de Pediatría, Hospital Clínico Universitario “Lozano Blesa”, Facultad de Medicina, Universidad de Zaragoza, ISS-Aragon and CIBERER-GCV02Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de MadridUnidad de Genética Clínica y Genómica Funcional, Departamento de Farmacología-Fisiología y Departamento de Pediatría, Hospital Clínico Universitario “Lozano Blesa”, Facultad de Medicina, Universidad de Zaragoza, ISS-Aragon and CIBERER-GCV02Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de MadridUnidad de Genética Clínica y Genómica Funcional, Departamento de Farmacología-Fisiología y Departamento de Pediatría, Hospital Clínico Universitario “Lozano Blesa”, Facultad de Medicina, Universidad de Zaragoza, ISS-Aragon and CIBERER-GCV02Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM)Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM)Abstract The cohesin ring is a protein complex composed of four core subunits: Smc1A, Smc3, Rad21 and Stag1/2. It is involved in chromosome segregation, DNA repair, chromatin organization and transcription regulation. Opening of the ring occurs at the “head” structure, formed of the ATPase domains of Smc1A and Smc3 and Rad21. We investigate the mechanisms of the cohesin ring opening using techniques of free molecular dynamics (MD), steered MD and quantum mechanics/molecular mechanics MD (QM/MM MD). The study allows the thorough analysis of the opening events at the atomic scale: i) ATP hydrolysis at the Smc1A site, evaluating the role of the carboxy-terminal domain of Rad21 in the process; ii) the activation of the Smc3 site potentially mediated by the movement of specific amino acids; and iii) opening of the head domains after the two ATP hydrolysis events. Our study suggests that the cohesin ring opening is triggered by a sequential activation of the ATP sites in which ATP hydrolysis at the Smc1A site induces ATPase activity at the Smc3 site. Our analysis also provides an explanation for the effect of pathogenic variants related to cohesinopathies and cancer.https://doi.org/10.1038/s41598-017-03118-9
collection DOAJ
language English
format Article
sources DOAJ
author Íñigo Marcos-Alcalde
Jesús I. Mendieta-Moreno
Beatriz Puisac
María Concepción Gil-Rodríguez
María Hernández-Marcos
Diego Soler-Polo
Feliciano J. Ramos
José Ortega
Juan Pié
Jesús Mendieta
Paulino Gómez-Puertas
spellingShingle Íñigo Marcos-Alcalde
Jesús I. Mendieta-Moreno
Beatriz Puisac
María Concepción Gil-Rodríguez
María Hernández-Marcos
Diego Soler-Polo
Feliciano J. Ramos
José Ortega
Juan Pié
Jesús Mendieta
Paulino Gómez-Puertas
Two-step ATP-driven opening of cohesin head
Scientific Reports
author_facet Íñigo Marcos-Alcalde
Jesús I. Mendieta-Moreno
Beatriz Puisac
María Concepción Gil-Rodríguez
María Hernández-Marcos
Diego Soler-Polo
Feliciano J. Ramos
José Ortega
Juan Pié
Jesús Mendieta
Paulino Gómez-Puertas
author_sort Íñigo Marcos-Alcalde
title Two-step ATP-driven opening of cohesin head
title_short Two-step ATP-driven opening of cohesin head
title_full Two-step ATP-driven opening of cohesin head
title_fullStr Two-step ATP-driven opening of cohesin head
title_full_unstemmed Two-step ATP-driven opening of cohesin head
title_sort two-step atp-driven opening of cohesin head
publisher Nature Publishing Group
series Scientific Reports
issn 2045-2322
publishDate 2017-06-01
description Abstract The cohesin ring is a protein complex composed of four core subunits: Smc1A, Smc3, Rad21 and Stag1/2. It is involved in chromosome segregation, DNA repair, chromatin organization and transcription regulation. Opening of the ring occurs at the “head” structure, formed of the ATPase domains of Smc1A and Smc3 and Rad21. We investigate the mechanisms of the cohesin ring opening using techniques of free molecular dynamics (MD), steered MD and quantum mechanics/molecular mechanics MD (QM/MM MD). The study allows the thorough analysis of the opening events at the atomic scale: i) ATP hydrolysis at the Smc1A site, evaluating the role of the carboxy-terminal domain of Rad21 in the process; ii) the activation of the Smc3 site potentially mediated by the movement of specific amino acids; and iii) opening of the head domains after the two ATP hydrolysis events. Our study suggests that the cohesin ring opening is triggered by a sequential activation of the ATP sites in which ATP hydrolysis at the Smc1A site induces ATPase activity at the Smc3 site. Our analysis also provides an explanation for the effect of pathogenic variants related to cohesinopathies and cancer.
url https://doi.org/10.1038/s41598-017-03118-9
work_keys_str_mv AT inigomarcosalcalde twostepatpdrivenopeningofcohesinhead
AT jesusimendietamoreno twostepatpdrivenopeningofcohesinhead
AT beatrizpuisac twostepatpdrivenopeningofcohesinhead
AT mariaconcepciongilrodriguez twostepatpdrivenopeningofcohesinhead
AT mariahernandezmarcos twostepatpdrivenopeningofcohesinhead
AT diegosolerpolo twostepatpdrivenopeningofcohesinhead
AT felicianojramos twostepatpdrivenopeningofcohesinhead
AT joseortega twostepatpdrivenopeningofcohesinhead
AT juanpie twostepatpdrivenopeningofcohesinhead
AT jesusmendieta twostepatpdrivenopeningofcohesinhead
AT paulinogomezpuertas twostepatpdrivenopeningofcohesinhead
_version_ 1724396604450930688