High-fidelity simulations in complex geometries: Towards better flow understanding and development of turbulence models

The present review shows a summary of current trends in high-fidelity simulations of turbulent flows in moderately complex geometries. These trends are put in the historical context of numerical simulations, starting with early weather predictions and continuing with seminal direct-numerical-simulat...

Full description

Bibliographic Details
Main Author: Ricardo Vinuesa
Format: Article
Language:English
Published: Elsevier 2021-09-01
Series:Results in Engineering
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2590123021000554
Description
Summary:The present review shows a summary of current trends in high-fidelity simulations of turbulent flows in moderately complex geometries. These trends are put in the historical context of numerical simulations, starting with early weather predictions and continuing with seminal direct-numerical-simulation work. Here we discuss high-fidelity simulations conducted in a number of complex geometries, including ducts, pipes, wings and obstacles, and describe the potential of the spectral-element method (SEM) to carry out such simulations. Finally, we provide a number of future directions where novel data-driven methods can exploit the great wealth of high-quality turbulence data in the literature.
ISSN:2590-1230