Exploring the octanol–water partition coefficient dataset using deep learning techniques and data augmentation

Deep neural networks are potent tools for computational chemistry, but experimental feed data can limit their reach. Here the authors develop deep neural network data augmentation models to predict octanol–water partition coefficients (log P) of a variety of tautomers.

Bibliographic Details
Main Authors: Nadin Ulrich, Kai-Uwe Goss, Andrea Ebert
Format: Article
Language:English
Published: Nature Publishing Group 2021-06-01
Series:Communications Chemistry
Online Access:https://doi.org/10.1038/s42004-021-00528-9
id doaj-9d61fbcad06746a6a19e36cf2342853f
record_format Article
spelling doaj-9d61fbcad06746a6a19e36cf2342853f2021-06-20T11:05:35ZengNature Publishing GroupCommunications Chemistry2399-36692021-06-014111010.1038/s42004-021-00528-9Exploring the octanol–water partition coefficient dataset using deep learning techniques and data augmentationNadin Ulrich0Kai-Uwe Goss1Andrea Ebert2Department of Analytical Environmental Chemistry, Helmholtz Centre for Environmental Research—UFZDepartment of Analytical Environmental Chemistry, Helmholtz Centre for Environmental Research—UFZDepartment of Analytical Environmental Chemistry, Helmholtz Centre for Environmental Research—UFZDeep neural networks are potent tools for computational chemistry, but experimental feed data can limit their reach. Here the authors develop deep neural network data augmentation models to predict octanol–water partition coefficients (log P) of a variety of tautomers.https://doi.org/10.1038/s42004-021-00528-9
collection DOAJ
language English
format Article
sources DOAJ
author Nadin Ulrich
Kai-Uwe Goss
Andrea Ebert
spellingShingle Nadin Ulrich
Kai-Uwe Goss
Andrea Ebert
Exploring the octanol–water partition coefficient dataset using deep learning techniques and data augmentation
Communications Chemistry
author_facet Nadin Ulrich
Kai-Uwe Goss
Andrea Ebert
author_sort Nadin Ulrich
title Exploring the octanol–water partition coefficient dataset using deep learning techniques and data augmentation
title_short Exploring the octanol–water partition coefficient dataset using deep learning techniques and data augmentation
title_full Exploring the octanol–water partition coefficient dataset using deep learning techniques and data augmentation
title_fullStr Exploring the octanol–water partition coefficient dataset using deep learning techniques and data augmentation
title_full_unstemmed Exploring the octanol–water partition coefficient dataset using deep learning techniques and data augmentation
title_sort exploring the octanol–water partition coefficient dataset using deep learning techniques and data augmentation
publisher Nature Publishing Group
series Communications Chemistry
issn 2399-3669
publishDate 2021-06-01
description Deep neural networks are potent tools for computational chemistry, but experimental feed data can limit their reach. Here the authors develop deep neural network data augmentation models to predict octanol–water partition coefficients (log P) of a variety of tautomers.
url https://doi.org/10.1038/s42004-021-00528-9
work_keys_str_mv AT nadinulrich exploringtheoctanolwaterpartitioncoefficientdatasetusingdeeplearningtechniquesanddataaugmentation
AT kaiuwegoss exploringtheoctanolwaterpartitioncoefficientdatasetusingdeeplearningtechniquesanddataaugmentation
AT andreaebert exploringtheoctanolwaterpartitioncoefficientdatasetusingdeeplearningtechniquesanddataaugmentation
_version_ 1721370471803387904