Using Spatial Validity and Uncertainty Metrics to Determine the Relative Suitability of Alternative Suites of Oceanographic Data for Seabed Biotope Prediction. A Case Study from the Barents Sea, Norway

The use of habitat distribution models (HDMs) has become common in benthic habitat mapping for combining limited seabed observations with full-coverage environmental data to produce classified maps showing predicted habitat distribution for an entire study area. However, relatively few HDMs include...

Full description

Bibliographic Details
Main Authors: Margaret F.J. Dolan, Rebecca E. Ross, Jon Albretsen, Jofrid Skarðhamar, Genoveva Gonzalez-Mirelis, Valérie K. Bellec, Pål Buhl-Mortensen, Lilja R. Bjarnadóttir
Format: Article
Language:English
Published: MDPI AG 2021-01-01
Series:Geosciences
Subjects:
Online Access:https://www.mdpi.com/2076-3263/11/2/48
id doaj-9d5bb42545534ea7bcc8ad266cb68fdf
record_format Article
spelling doaj-9d5bb42545534ea7bcc8ad266cb68fdf2021-01-27T00:02:28ZengMDPI AGGeosciences2076-32632021-01-0111484810.3390/geosciences11020048Using Spatial Validity and Uncertainty Metrics to Determine the Relative Suitability of Alternative Suites of Oceanographic Data for Seabed Biotope Prediction. A Case Study from the Barents Sea, NorwayMargaret F.J. Dolan0Rebecca E. Ross1Jon Albretsen2Jofrid Skarðhamar3Genoveva Gonzalez-Mirelis4Valérie K. Bellec5Pål Buhl-Mortensen6Lilja R. Bjarnadóttir7Geological Survey of Norway (NGU), P.O. Box 6315 Torgarden, NO-7491 Trondheim, NorwayInstitute of Marine Research, P.O. Box 1870 Nordnes, NO-5817 Bergen, NorwayInstitute of Marine Research, Flødevigen Research Station, Nye Flødevigveien 20, NO-4817 His, NorwayInstitute of Marine Research, Fram Centre, P.O Box 6606 Langnes, NO-9296 Tromsø, NorwayInstitute of Marine Research, P.O. Box 1870 Nordnes, NO-5817 Bergen, NorwayGeological Survey of Norway (NGU), P.O. Box 6315 Torgarden, NO-7491 Trondheim, NorwayInstitute of Marine Research, P.O. Box 1870 Nordnes, NO-5817 Bergen, NorwayGeological Survey of Norway (NGU), P.O. Box 6315 Torgarden, NO-7491 Trondheim, NorwayThe use of habitat distribution models (HDMs) has become common in benthic habitat mapping for combining limited seabed observations with full-coverage environmental data to produce classified maps showing predicted habitat distribution for an entire study area. However, relatively few HDMs include oceanographic predictors, or present spatial validity or uncertainty analyses to support the classified predictions. Without reference studies it can be challenging to assess which type of oceanographic model data should be used, or developed, for this purpose. In this study, we compare biotope maps built using predictor variable suites from three different oceanographic models with differing levels of detail on near-bottom conditions. These results are compared with a baseline model without oceanographic predictors. We use associated spatial validity and uncertainty analyses to assess which oceanographic data may be best suited to biotope mapping. Our results show how spatial validity and uncertainty metrics capture differences between HDM outputs which are otherwise not apparent from standard non-spatial accuracy assessments or the classified maps themselves. We conclude that biotope HDMs incorporating high-resolution, preferably bottom-optimised, oceanography data can best minimise spatial uncertainty and maximise spatial validity. Furthermore, our results suggest that incorporating coarser oceanographic data may lead to more uncertainty than omitting such data.https://www.mdpi.com/2076-3263/11/2/48biotopeshabitat distribution modellingspatial uncertaintyspatial validityoceanographic modelsseabed mapping
collection DOAJ
language English
format Article
sources DOAJ
author Margaret F.J. Dolan
Rebecca E. Ross
Jon Albretsen
Jofrid Skarðhamar
Genoveva Gonzalez-Mirelis
Valérie K. Bellec
Pål Buhl-Mortensen
Lilja R. Bjarnadóttir
spellingShingle Margaret F.J. Dolan
Rebecca E. Ross
Jon Albretsen
Jofrid Skarðhamar
Genoveva Gonzalez-Mirelis
Valérie K. Bellec
Pål Buhl-Mortensen
Lilja R. Bjarnadóttir
Using Spatial Validity and Uncertainty Metrics to Determine the Relative Suitability of Alternative Suites of Oceanographic Data for Seabed Biotope Prediction. A Case Study from the Barents Sea, Norway
Geosciences
biotopes
habitat distribution modelling
spatial uncertainty
spatial validity
oceanographic models
seabed mapping
author_facet Margaret F.J. Dolan
Rebecca E. Ross
Jon Albretsen
Jofrid Skarðhamar
Genoveva Gonzalez-Mirelis
Valérie K. Bellec
Pål Buhl-Mortensen
Lilja R. Bjarnadóttir
author_sort Margaret F.J. Dolan
title Using Spatial Validity and Uncertainty Metrics to Determine the Relative Suitability of Alternative Suites of Oceanographic Data for Seabed Biotope Prediction. A Case Study from the Barents Sea, Norway
title_short Using Spatial Validity and Uncertainty Metrics to Determine the Relative Suitability of Alternative Suites of Oceanographic Data for Seabed Biotope Prediction. A Case Study from the Barents Sea, Norway
title_full Using Spatial Validity and Uncertainty Metrics to Determine the Relative Suitability of Alternative Suites of Oceanographic Data for Seabed Biotope Prediction. A Case Study from the Barents Sea, Norway
title_fullStr Using Spatial Validity and Uncertainty Metrics to Determine the Relative Suitability of Alternative Suites of Oceanographic Data for Seabed Biotope Prediction. A Case Study from the Barents Sea, Norway
title_full_unstemmed Using Spatial Validity and Uncertainty Metrics to Determine the Relative Suitability of Alternative Suites of Oceanographic Data for Seabed Biotope Prediction. A Case Study from the Barents Sea, Norway
title_sort using spatial validity and uncertainty metrics to determine the relative suitability of alternative suites of oceanographic data for seabed biotope prediction. a case study from the barents sea, norway
publisher MDPI AG
series Geosciences
issn 2076-3263
publishDate 2021-01-01
description The use of habitat distribution models (HDMs) has become common in benthic habitat mapping for combining limited seabed observations with full-coverage environmental data to produce classified maps showing predicted habitat distribution for an entire study area. However, relatively few HDMs include oceanographic predictors, or present spatial validity or uncertainty analyses to support the classified predictions. Without reference studies it can be challenging to assess which type of oceanographic model data should be used, or developed, for this purpose. In this study, we compare biotope maps built using predictor variable suites from three different oceanographic models with differing levels of detail on near-bottom conditions. These results are compared with a baseline model without oceanographic predictors. We use associated spatial validity and uncertainty analyses to assess which oceanographic data may be best suited to biotope mapping. Our results show how spatial validity and uncertainty metrics capture differences between HDM outputs which are otherwise not apparent from standard non-spatial accuracy assessments or the classified maps themselves. We conclude that biotope HDMs incorporating high-resolution, preferably bottom-optimised, oceanography data can best minimise spatial uncertainty and maximise spatial validity. Furthermore, our results suggest that incorporating coarser oceanographic data may lead to more uncertainty than omitting such data.
topic biotopes
habitat distribution modelling
spatial uncertainty
spatial validity
oceanographic models
seabed mapping
url https://www.mdpi.com/2076-3263/11/2/48
work_keys_str_mv AT margaretfjdolan usingspatialvalidityanduncertaintymetricstodeterminetherelativesuitabilityofalternativesuitesofoceanographicdataforseabedbiotopepredictionacasestudyfromthebarentsseanorway
AT rebeccaeross usingspatialvalidityanduncertaintymetricstodeterminetherelativesuitabilityofalternativesuitesofoceanographicdataforseabedbiotopepredictionacasestudyfromthebarentsseanorway
AT jonalbretsen usingspatialvalidityanduncertaintymetricstodeterminetherelativesuitabilityofalternativesuitesofoceanographicdataforseabedbiotopepredictionacasestudyfromthebarentsseanorway
AT jofridskarðhamar usingspatialvalidityanduncertaintymetricstodeterminetherelativesuitabilityofalternativesuitesofoceanographicdataforseabedbiotopepredictionacasestudyfromthebarentsseanorway
AT genovevagonzalezmirelis usingspatialvalidityanduncertaintymetricstodeterminetherelativesuitabilityofalternativesuitesofoceanographicdataforseabedbiotopepredictionacasestudyfromthebarentsseanorway
AT valeriekbellec usingspatialvalidityanduncertaintymetricstodeterminetherelativesuitabilityofalternativesuitesofoceanographicdataforseabedbiotopepredictionacasestudyfromthebarentsseanorway
AT palbuhlmortensen usingspatialvalidityanduncertaintymetricstodeterminetherelativesuitabilityofalternativesuitesofoceanographicdataforseabedbiotopepredictionacasestudyfromthebarentsseanorway
AT liljarbjarnadottir usingspatialvalidityanduncertaintymetricstodeterminetherelativesuitabilityofalternativesuitesofoceanographicdataforseabedbiotopepredictionacasestudyfromthebarentsseanorway
_version_ 1724322190989459456