Group Invariant Solutions and Conserved Quantities of a (31)-Dimensional Generalized Kadomtsev–Petviashvili Equation<sup>+</sup>

In this work, we investigate a (3+1)-dimensional generalised Kadomtsev–Petviashvili equation, recently introduced in the literature. We determine its group invariant solutions by employing Lie symmetry methods and obtain elliptic, rational and logarithmic solutions. The solutions derived in this pap...

Full description

Bibliographic Details
Main Authors: Innocent Simbanefayi, Chaudry Masood Khalique
Format: Article
Language:English
Published: MDPI AG 2020-06-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/8/6/1012
Description
Summary:In this work, we investigate a (3+1)-dimensional generalised Kadomtsev–Petviashvili equation, recently introduced in the literature. We determine its group invariant solutions by employing Lie symmetry methods and obtain elliptic, rational and logarithmic solutions. The solutions derived in this paper are the most general since they contain elliptic functions. Finally, we derive the conserved quantities of this equation by employing two approaches—the general multiplier approach and Ibragimov’s theorem. The importance of conservation laws is explained in the introduction. It should be pointed out that the investigation of higher dimensional nonlinear partial differential equations is vital to our perception of the real world since they are more realistic models of natural and man-made phenomena.
ISSN:2227-7390