Periodic solutions of arbitrary length in a simple integer iteration

<p>We prove that all solutions to the nonlinear second-order difference equation in integers <mml:math alttext="$y_{n+1}=lceil ay_{n} ceil -y_{n-1}$"> <mml:mrow> <mml:msub> <mml:mi>y</mml:mi> <mml:mrow> <mml:mi>n</mml:mi><mml:mo...

Full description

Bibliographic Details
Format: Article
Language:English
Published: SpringerOpen 2006-01-01
Series:Advances in Difference Equations
Online Access:http://www.hindawi.com/GetArticle.aspx?doi=10.1155/ADE/2006/35847
id doaj-9d28b4c7704a4167a5df29857f9310d7
record_format Article
spelling doaj-9d28b4c7704a4167a5df29857f9310d72020-11-24T21:04:31ZengSpringerOpenAdvances in Difference Equations1687-18392006-01-012006Periodic solutions of arbitrary length in a simple integer iteration<p>We prove that all solutions to the nonlinear second-order difference equation in integers <mml:math alttext="$y_{n+1}=lceil ay_{n} ceil -y_{n-1}$"> <mml:mrow> <mml:msub> <mml:mi>y</mml:mi> <mml:mrow> <mml:mi>n</mml:mi><mml:mo>+</mml:mo><mml:mn>1</mml:mn> </mml:mrow> </mml:msub> <mml:mo>=</mml:mo><mml:mrow><mml:mo>&#x2308;</mml:mo> <mml:mrow> <mml:mi>a</mml:mi><mml:msub> <mml:mi>Y</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> <mml:mo>&#x02309;</mml:mo></mml:mrow><mml:mo>&#x2212;</mml:mo><mml:msub> <mml:mi>y</mml:mi> <mml:mrow> <mml:mi>n</mml:mi><mml:mo>&#x2212;</mml:mo><mml:mn>1</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> </mml:math>,<mml:math alttext="${ain mathbb{R} : |a|<2, a eq 0,pm 1}$"> <mml:mrow> <mml:mrow><mml:mo>{</mml:mo> <mml:mrow> <mml:mi>a</mml:mi><mml:mo>&#x2208;</mml:mo><mml:mi>&#x211D;</mml:mi><mml:mo>:</mml:mo><mml:mrow><mml:mo>|</mml:mo> <mml:mi>a</mml:mi> <mml:mo>|</mml:mo></mml:mrow><mml:mo>&#x003C;</mml:mo><mml:mn>2</mml:mn><mml:mo>,</mml:mo><mml:mi>a</mml:mi><mml:mo>&#x2260;</mml:mo><mml:mn>0</mml:mn><mml:mo>,</mml:mo><mml:mo>&#x00B1;</mml:mo><mml:mn>1</mml:mn> </mml:mrow> <mml:mo>}</mml:mo></mml:mrow> </mml:mrow> </mml:math>,<mml:math alttext="$y_{0},y_{1}in mathbb{Z}$"> <mml:mrow> <mml:msub> <mml:mi>y</mml:mi> <mml:mi>o</mml:mi> </mml:msub> <mml:mo>,</mml:mo><mml:msub> <mml:mi>y</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>&#x2208;</mml:mo><mml:mi>&#x2124;</mml:mi> </mml:mrow> </mml:math>, are periodic. The first-order system representation of this equation is shown to have self-similar and chaotic solutions in the integer plane. </p>http://www.hindawi.com/GetArticle.aspx?doi=10.1155/ADE/2006/35847
collection DOAJ
language English
format Article
sources DOAJ
title Periodic solutions of arbitrary length in a simple integer iteration
spellingShingle Periodic solutions of arbitrary length in a simple integer iteration
Advances in Difference Equations
title_short Periodic solutions of arbitrary length in a simple integer iteration
title_full Periodic solutions of arbitrary length in a simple integer iteration
title_fullStr Periodic solutions of arbitrary length in a simple integer iteration
title_full_unstemmed Periodic solutions of arbitrary length in a simple integer iteration
title_sort periodic solutions of arbitrary length in a simple integer iteration
publisher SpringerOpen
series Advances in Difference Equations
issn 1687-1839
publishDate 2006-01-01
description <p>We prove that all solutions to the nonlinear second-order difference equation in integers <mml:math alttext="$y_{n+1}=lceil ay_{n} ceil -y_{n-1}$"> <mml:mrow> <mml:msub> <mml:mi>y</mml:mi> <mml:mrow> <mml:mi>n</mml:mi><mml:mo>+</mml:mo><mml:mn>1</mml:mn> </mml:mrow> </mml:msub> <mml:mo>=</mml:mo><mml:mrow><mml:mo>&#x2308;</mml:mo> <mml:mrow> <mml:mi>a</mml:mi><mml:msub> <mml:mi>Y</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> <mml:mo>&#x02309;</mml:mo></mml:mrow><mml:mo>&#x2212;</mml:mo><mml:msub> <mml:mi>y</mml:mi> <mml:mrow> <mml:mi>n</mml:mi><mml:mo>&#x2212;</mml:mo><mml:mn>1</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> </mml:math>,<mml:math alttext="${ain mathbb{R} : |a|<2, a eq 0,pm 1}$"> <mml:mrow> <mml:mrow><mml:mo>{</mml:mo> <mml:mrow> <mml:mi>a</mml:mi><mml:mo>&#x2208;</mml:mo><mml:mi>&#x211D;</mml:mi><mml:mo>:</mml:mo><mml:mrow><mml:mo>|</mml:mo> <mml:mi>a</mml:mi> <mml:mo>|</mml:mo></mml:mrow><mml:mo>&#x003C;</mml:mo><mml:mn>2</mml:mn><mml:mo>,</mml:mo><mml:mi>a</mml:mi><mml:mo>&#x2260;</mml:mo><mml:mn>0</mml:mn><mml:mo>,</mml:mo><mml:mo>&#x00B1;</mml:mo><mml:mn>1</mml:mn> </mml:mrow> <mml:mo>}</mml:mo></mml:mrow> </mml:mrow> </mml:math>,<mml:math alttext="$y_{0},y_{1}in mathbb{Z}$"> <mml:mrow> <mml:msub> <mml:mi>y</mml:mi> <mml:mi>o</mml:mi> </mml:msub> <mml:mo>,</mml:mo><mml:msub> <mml:mi>y</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>&#x2208;</mml:mo><mml:mi>&#x2124;</mml:mi> </mml:mrow> </mml:math>, are periodic. The first-order system representation of this equation is shown to have self-similar and chaotic solutions in the integer plane. </p>
url http://www.hindawi.com/GetArticle.aspx?doi=10.1155/ADE/2006/35847
_version_ 1716770801670160384