Least energy sign-changing solutions for Kirchhoff–Poisson systems

Abstract The paper deals with the following Kirchhoff–Poisson systems: 0.1 {−(1+b∫R3|∇u|2dx)Δu+u+k(x)ϕu+λ|u|p−2u=h(x)|u|q−2u,x∈R3,−Δϕ=k(x)u2,x∈R3, $$ \textstyle\begin{cases} - ( {1+b\int _{{\mathbb{R}}^{3}} { \vert \nabla u \vert ^{2}\,dx} } ) \Delta u+u+k(x)\phi u+\lambda \vert u \vert ^{p-2}u=h(x)...

Full description

Bibliographic Details
Main Authors: Guoqing Chai, Weiming Liu
Format: Article
Language:English
Published: SpringerOpen 2019-10-01
Series:Boundary Value Problems
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13661-019-1280-3

Similar Items