Evolutionary Genomics of Peach and Almond Domestication

The domesticated almond [Prunus dulcis (L.) Batsch] and peach [P. persica (Mill.) D. A. Webb] originated on opposite sides of Asia and were independently domesticated ∼5000 yr ago. While interfertile, they possess alternate mating systems and differ in a number of morphological and physiological tra...

Full description

Bibliographic Details
Main Authors: Dianne Velasco, Josh Hough, Mallikarjuna Aradhya, Jeffrey Ross-Ibarra
Format: Article
Language:English
Published: Oxford University Press 2016-12-01
Series:G3: Genes, Genomes, Genetics
Subjects:
Online Access:http://g3journal.org/lookup/doi/10.1534/g3.116.032672
Description
Summary:The domesticated almond [Prunus dulcis (L.) Batsch] and peach [P. persica (Mill.) D. A. Webb] originated on opposite sides of Asia and were independently domesticated ∼5000 yr ago. While interfertile, they possess alternate mating systems and differ in a number of morphological and physiological traits. Here, we evaluated patterns of genome-wide diversity in both almond and peach to better understand the impacts of mating system, adaptation, and domestication on the evolution of these taxa. Almond has around seven times the genetic diversity of peach, and high genome-wide FST values support their status as separate species. We estimated a divergence time of ∼8 MYA (million years ago), coinciding with an active period of uplift in the northeast Tibetan Plateau and subsequent Asian climate change. We see no evidence of a bottleneck during domestication of either species, but identify a number of regions showing signatures of selection during domestication and a significant overlap in candidate regions between peach and almond. While we expected gene expression in fruit to overlap with candidate selected regions, instead we find enrichment for loci highly differentiated between the species, consistent with recent fossil evidence suggesting fruit divergence long preceded domestication. Taken together, this study tells us how closely related tree species evolve and are domesticated, the impact of these events on their genomes, and the utility of genomic information for long-lived species. Further exploration of this data will contribute to the genetic knowledge of these species and provide information regarding targets of selection for breeding application, and further the understanding of evolution in these species.
ISSN:2160-1836