Spatial correlations exploitation based on nonlocal voxel-wise GWAS for biomarker detection of AD
Potential biomarker detection is a crucial area of study for the prediction, diagnosis, and monitoring of Alzheimer's disease (AD). The voxelwise genome-wide association study (vGWAS) is widely used in imaging genomics studies that is usually applied to the detection of AD biomarkers in both im...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2019-01-01
|
Series: | NeuroImage: Clinical |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2213158218303905 |
id |
doaj-9cbd237ee52545ef9e7c701ce502acad |
---|---|
record_format |
Article |
spelling |
doaj-9cbd237ee52545ef9e7c701ce502acad2020-11-25T01:11:34ZengElsevierNeuroImage: Clinical2213-15822019-01-0121Spatial correlations exploitation based on nonlocal voxel-wise GWAS for biomarker detection of ADMeiyan Huang0Chunyan Deng1Yuwei Yu2Tao Lian3Wei Yang4Qianjin Feng5Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, ChinaGuangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, China; Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou, ChinaGuangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, ChinaGuangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, ChinaGuangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, ChinaGuangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, China; Corresponding author.Potential biomarker detection is a crucial area of study for the prediction, diagnosis, and monitoring of Alzheimer's disease (AD). The voxelwise genome-wide association study (vGWAS) is widely used in imaging genomics studies that is usually applied to the detection of AD biomarkers in both imaging and genetic data. However, performing vGWAS remains a challenge because of the computational complexity of the technique and our ignorance of the spatial correlations within the imaging data. In this paper, we propose a novel method based on the exploitation of spatial correlations that may help to detect potential AD biomarkers using a fast vGWAS. To incorporate spatial correlations, we applied a nonlocal method that supposed that a given voxel could be represented by weighting the sum of the other voxels. Three commonly used weighting methods were adopted to calculate the weights among different voxels in this study. Then, a fast vGWAS approach was used to assess the association between the image and the genetic data. The proposed method was estimated using both simulated and real data. In the simulation studies, we designed a set of experiments to evaluate the effectiveness of the nonlocal method for incorporating spatial correlations in vGWAS. The experiments showed that incorporating spatial correlations by the nonlocal method could improve the detecting accuracy of AD biomarkers. For real data, we successfully identified three genes, namely, ANK3, MEIS2, and TLR4, which have significant associations with mental retardation, learning disabilities and age according to previous research. These genes have profound impacts on AD or other neurodegenerative diseases. Our results indicated that our method might be an effective and valuable tool for detecting potential biomarkers of AD. Keywords: AD biomarker, vGWAS, Imaging genomics studies, Spatial correlations, Nonlocal methodhttp://www.sciencedirect.com/science/article/pii/S2213158218303905 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Meiyan Huang Chunyan Deng Yuwei Yu Tao Lian Wei Yang Qianjin Feng |
spellingShingle |
Meiyan Huang Chunyan Deng Yuwei Yu Tao Lian Wei Yang Qianjin Feng Spatial correlations exploitation based on nonlocal voxel-wise GWAS for biomarker detection of AD NeuroImage: Clinical |
author_facet |
Meiyan Huang Chunyan Deng Yuwei Yu Tao Lian Wei Yang Qianjin Feng |
author_sort |
Meiyan Huang |
title |
Spatial correlations exploitation based on nonlocal voxel-wise GWAS for biomarker detection of AD |
title_short |
Spatial correlations exploitation based on nonlocal voxel-wise GWAS for biomarker detection of AD |
title_full |
Spatial correlations exploitation based on nonlocal voxel-wise GWAS for biomarker detection of AD |
title_fullStr |
Spatial correlations exploitation based on nonlocal voxel-wise GWAS for biomarker detection of AD |
title_full_unstemmed |
Spatial correlations exploitation based on nonlocal voxel-wise GWAS for biomarker detection of AD |
title_sort |
spatial correlations exploitation based on nonlocal voxel-wise gwas for biomarker detection of ad |
publisher |
Elsevier |
series |
NeuroImage: Clinical |
issn |
2213-1582 |
publishDate |
2019-01-01 |
description |
Potential biomarker detection is a crucial area of study for the prediction, diagnosis, and monitoring of Alzheimer's disease (AD). The voxelwise genome-wide association study (vGWAS) is widely used in imaging genomics studies that is usually applied to the detection of AD biomarkers in both imaging and genetic data. However, performing vGWAS remains a challenge because of the computational complexity of the technique and our ignorance of the spatial correlations within the imaging data. In this paper, we propose a novel method based on the exploitation of spatial correlations that may help to detect potential AD biomarkers using a fast vGWAS. To incorporate spatial correlations, we applied a nonlocal method that supposed that a given voxel could be represented by weighting the sum of the other voxels. Three commonly used weighting methods were adopted to calculate the weights among different voxels in this study. Then, a fast vGWAS approach was used to assess the association between the image and the genetic data. The proposed method was estimated using both simulated and real data. In the simulation studies, we designed a set of experiments to evaluate the effectiveness of the nonlocal method for incorporating spatial correlations in vGWAS. The experiments showed that incorporating spatial correlations by the nonlocal method could improve the detecting accuracy of AD biomarkers. For real data, we successfully identified three genes, namely, ANK3, MEIS2, and TLR4, which have significant associations with mental retardation, learning disabilities and age according to previous research. These genes have profound impacts on AD or other neurodegenerative diseases. Our results indicated that our method might be an effective and valuable tool for detecting potential biomarkers of AD. Keywords: AD biomarker, vGWAS, Imaging genomics studies, Spatial correlations, Nonlocal method |
url |
http://www.sciencedirect.com/science/article/pii/S2213158218303905 |
work_keys_str_mv |
AT meiyanhuang spatialcorrelationsexploitationbasedonnonlocalvoxelwisegwasforbiomarkerdetectionofad AT chunyandeng spatialcorrelationsexploitationbasedonnonlocalvoxelwisegwasforbiomarkerdetectionofad AT yuweiyu spatialcorrelationsexploitationbasedonnonlocalvoxelwisegwasforbiomarkerdetectionofad AT taolian spatialcorrelationsexploitationbasedonnonlocalvoxelwisegwasforbiomarkerdetectionofad AT weiyang spatialcorrelationsexploitationbasedonnonlocalvoxelwisegwasforbiomarkerdetectionofad AT qianjinfeng spatialcorrelationsexploitationbasedonnonlocalvoxelwisegwasforbiomarkerdetectionofad |
_version_ |
1725170795039162368 |