Covid-19 Detection by Optimizing Deep Residual Features with Improved Clustering-Based Golden Ratio Optimizer

The COVID-19 virus is spreading across the world very rapidly. The World Health Organization (WHO) declared it a global pandemic on 11 March 2020. Early detection of this virus is necessary because of the unavailability of any specific drug. The researchers have developed different techniques for CO...

Full description

Bibliographic Details
Main Authors: Soham Chattopadhyay, Arijit Dey, Pawan Kumar Singh, Zong Woo Geem, Ram Sarkar
Format: Article
Language:English
Published: MDPI AG 2021-02-01
Series:Diagnostics
Subjects:
Online Access:https://www.mdpi.com/2075-4418/11/2/315
Description
Summary:The COVID-19 virus is spreading across the world very rapidly. The World Health Organization (WHO) declared it a global pandemic on 11 March 2020. Early detection of this virus is necessary because of the unavailability of any specific drug. The researchers have developed different techniques for COVID-19 detection, but only a few of them have achieved satisfactory results. There are three ways for COVID-19 detection to date, those are real-time reverse transcription-polymerize chain reaction (RT-PCR), Computed Tomography (CT), and X-ray plays. In this work, we have proposed a less expensive computational model for automatic COVID-19 detection from Chest X-ray and CT-scan images. Our paper has a two-fold contribution. Initially, we have extracted deep features from the image dataset and then introduced a completely novel meta-heuristic feature selection approach, named Clustering-based Golden Ratio Optimizer (CGRO). The model has been implemented on three publicly available datasets, namely the COVID CT-dataset, SARS-Cov-2 dataset, and Chest X-Ray dataset, and attained state-of-the-art accuracies of 99.31%, 98.65%, and 99.44%, respectively.
ISSN:2075-4418