Analytical Techniques for a Numerical Solution of the Linear Volterra Integral Equation of the Second Kind
In this work we use analytical tools—Schauder bases and Geometric Series theorem—in order to develop a new method for the numerical resolution of the linear Volterra integral equation of the second kind.
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2009-01-01
|
Series: | Abstract and Applied Analysis |
Online Access: | http://dx.doi.org/10.1155/2009/149367 |
id |
doaj-9c65f23552494d2e804d5fd2dfa0848f |
---|---|
record_format |
Article |
spelling |
doaj-9c65f23552494d2e804d5fd2dfa0848f2020-11-24T23:37:15ZengHindawi LimitedAbstract and Applied Analysis1085-33751687-04092009-01-01200910.1155/2009/149367149367Analytical Techniques for a Numerical Solution of the Linear Volterra Integral Equation of the Second KindM. I. Berenguer0D. Gámez1A. I. Garralda-Guillem2M. Ruiz Galán3M. C. Serrano Pérez4E.U. Arquitectura Técnica, Departamento de Matemática Aplicada, Universidad de Granada, c/Severo Ochoa s/n, 18071 Granada, SpainE.U. Arquitectura Técnica, Departamento de Matemática Aplicada, Universidad de Granada, c/Severo Ochoa s/n, 18071 Granada, SpainE.U. Arquitectura Técnica, Departamento de Matemática Aplicada, Universidad de Granada, c/Severo Ochoa s/n, 18071 Granada, SpainE.U. Arquitectura Técnica, Departamento de Matemática Aplicada, Universidad de Granada, c/Severo Ochoa s/n, 18071 Granada, SpainE.U. Arquitectura Técnica, Departamento de Matemática Aplicada, Universidad de Granada, c/Severo Ochoa s/n, 18071 Granada, SpainIn this work we use analytical tools—Schauder bases and Geometric Series theorem—in order to develop a new method for the numerical resolution of the linear Volterra integral equation of the second kind.http://dx.doi.org/10.1155/2009/149367 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
M. I. Berenguer D. Gámez A. I. Garralda-Guillem M. Ruiz Galán M. C. Serrano Pérez |
spellingShingle |
M. I. Berenguer D. Gámez A. I. Garralda-Guillem M. Ruiz Galán M. C. Serrano Pérez Analytical Techniques for a Numerical Solution of the Linear Volterra Integral Equation of the Second Kind Abstract and Applied Analysis |
author_facet |
M. I. Berenguer D. Gámez A. I. Garralda-Guillem M. Ruiz Galán M. C. Serrano Pérez |
author_sort |
M. I. Berenguer |
title |
Analytical Techniques for a Numerical Solution of the Linear Volterra Integral Equation of the Second Kind |
title_short |
Analytical Techniques for a Numerical Solution of the Linear Volterra Integral Equation of the Second Kind |
title_full |
Analytical Techniques for a Numerical Solution of the Linear Volterra Integral Equation of the Second Kind |
title_fullStr |
Analytical Techniques for a Numerical Solution of the Linear Volterra Integral Equation of the Second Kind |
title_full_unstemmed |
Analytical Techniques for a Numerical Solution of the Linear Volterra Integral Equation of the Second Kind |
title_sort |
analytical techniques for a numerical solution of the linear volterra integral equation of the second kind |
publisher |
Hindawi Limited |
series |
Abstract and Applied Analysis |
issn |
1085-3375 1687-0409 |
publishDate |
2009-01-01 |
description |
In this work we use analytical tools—Schauder bases and Geometric Series theorem—in order to develop a new method for the numerical resolution of the linear Volterra integral equation of the second kind. |
url |
http://dx.doi.org/10.1155/2009/149367 |
work_keys_str_mv |
AT miberenguer analyticaltechniquesforanumericalsolutionofthelinearvolterraintegralequationofthesecondkind AT dgamez analyticaltechniquesforanumericalsolutionofthelinearvolterraintegralequationofthesecondkind AT aigarraldaguillem analyticaltechniquesforanumericalsolutionofthelinearvolterraintegralequationofthesecondkind AT mruizgalan analyticaltechniquesforanumericalsolutionofthelinearvolterraintegralequationofthesecondkind AT mcserranoperez analyticaltechniquesforanumericalsolutionofthelinearvolterraintegralequationofthesecondkind |
_version_ |
1725520876812632064 |