Fabrication of Al2O3-Cu Nanocomposites Using Rotary Chemical Vapor Deposition and Spark Plasma Sintering

A two-step rotary chemical vapor deposition technique was developed to uniformly mix Cu nanoparticles with the γAl2O3 powders, and then the as-obtained powders were consolidated to Al2O3-Cu nanocomposites by spark plasma sintering. In the RCVD process, the metal-organic precursor of copper dipivaloy...

Full description

Bibliographic Details
Main Authors: Jianfeng Zhang, Takashi Goto
Format: Article
Language:English
Published: Hindawi Limited 2015-01-01
Series:Journal of Nanomaterials
Online Access:http://dx.doi.org/10.1155/2015/790361
Description
Summary:A two-step rotary chemical vapor deposition technique was developed to uniformly mix Cu nanoparticles with the γAl2O3 powders, and then the as-obtained powders were consolidated to Al2O3-Cu nanocomposites by spark plasma sintering. In the RCVD process, the metal-organic precursor of copper dipivaloylmethanate (Cu(DPM)2) reacted with O2 and then was reduced by H2 in order to erase the contamination of carbon. At 1473 K, the relative density of Al2O3-Cu increased with increasing CCu and the maximum value was 97.7% at CCu = 5.2 mass%. The maximum fracture toughness of Al2O3-Cu was 4.1 MPa m1/2 at CCu = 3.8 mass%, and 1 MPa m1/2 higher than that of monolithic Al2O3, validating the beneficial effects of Cu nanoparticles.
ISSN:1687-4110
1687-4129