A High-Efficiency Two-Stroke Engine Concept: The Boosted Uniflow Scavenged Direct-Injection Gasoline (BUSDIG) Engine with Air Hybrid Operation

A novel two-stroke boosted uniflow scavenged direct-injection gasoline (BUSDIG) engine has been proposed and designed in order to achieve aggressive engine downsizing and down-speeding for higher engine performance and efficiency. In this paper, the design and development of the BUSDIG engine are ou...

Full description

Bibliographic Details
Main Authors: Xinyan Wang, Hua Zhao
Format: Article
Language:English
Published: Elsevier 2019-06-01
Series:Engineering
Online Access:http://www.sciencedirect.com/science/article/pii/S209580991830715X
id doaj-9c5275768ca245428a26455ac3006074
record_format Article
spelling doaj-9c5275768ca245428a26455ac30060742020-11-25T01:59:20ZengElsevierEngineering2095-80992019-06-0153535547A High-Efficiency Two-Stroke Engine Concept: The Boosted Uniflow Scavenged Direct-Injection Gasoline (BUSDIG) Engine with Air Hybrid OperationXinyan Wang0Hua Zhao1Corresponding author.; Center for Advanced Powertrain and Fuels, Brunel University London, Uxbridge UB8 3PH, UKCenter for Advanced Powertrain and Fuels, Brunel University London, Uxbridge UB8 3PH, UKA novel two-stroke boosted uniflow scavenged direct-injection gasoline (BUSDIG) engine has been proposed and designed in order to achieve aggressive engine downsizing and down-speeding for higher engine performance and efficiency. In this paper, the design and development of the BUSDIG engine are outlined discussed and the key findings are summarized to highlight the progress of the development of the proposed two-stroke BUSDIG engine. In order to maximize the scavenging performance and produce sufficient in-cylinder flow motions for the fuel/air mixing process in the two-stroke BUSDIG engine, the engine bore/stroke ratio, intake scavenge port angles, and intake plenum design were optimized by three-dimensional (3D) computational fluid dynamics (CFD) simulations. The effects of the opening profiles of the scavenge ports and exhaust valves on controlling the scavenging process were also investigated. In order to achieve optimal in-cylinder fuel stratification, the mixture-formation processes by different injection strategies were studied by using CFD simulations with a calibrated Reitz–Diwakar breakup model. Based on the optimal design of the BUSDIG engine, one-dimensional (1D) engine simulations were performed in Ricardo WAVE. The results showed that a maximum brake thermal efficiency of 47.2% can be achieved for the two-stroke BUSDIG engine with lean combustion and water injection. A peak brake toque of 379 N·m and a peak brake power density of 112 kW·L−1 were achieved at 1600 and 4000 r·min−1, respectively, in the BUSDIG engine with the stoichiometric condition. Keywords: Two-stroke engine, Uniflow scavenging, Engine design, Engine simulation, Scavenging performance, Thermal efficiencyhttp://www.sciencedirect.com/science/article/pii/S209580991830715X
collection DOAJ
language English
format Article
sources DOAJ
author Xinyan Wang
Hua Zhao
spellingShingle Xinyan Wang
Hua Zhao
A High-Efficiency Two-Stroke Engine Concept: The Boosted Uniflow Scavenged Direct-Injection Gasoline (BUSDIG) Engine with Air Hybrid Operation
Engineering
author_facet Xinyan Wang
Hua Zhao
author_sort Xinyan Wang
title A High-Efficiency Two-Stroke Engine Concept: The Boosted Uniflow Scavenged Direct-Injection Gasoline (BUSDIG) Engine with Air Hybrid Operation
title_short A High-Efficiency Two-Stroke Engine Concept: The Boosted Uniflow Scavenged Direct-Injection Gasoline (BUSDIG) Engine with Air Hybrid Operation
title_full A High-Efficiency Two-Stroke Engine Concept: The Boosted Uniflow Scavenged Direct-Injection Gasoline (BUSDIG) Engine with Air Hybrid Operation
title_fullStr A High-Efficiency Two-Stroke Engine Concept: The Boosted Uniflow Scavenged Direct-Injection Gasoline (BUSDIG) Engine with Air Hybrid Operation
title_full_unstemmed A High-Efficiency Two-Stroke Engine Concept: The Boosted Uniflow Scavenged Direct-Injection Gasoline (BUSDIG) Engine with Air Hybrid Operation
title_sort high-efficiency two-stroke engine concept: the boosted uniflow scavenged direct-injection gasoline (busdig) engine with air hybrid operation
publisher Elsevier
series Engineering
issn 2095-8099
publishDate 2019-06-01
description A novel two-stroke boosted uniflow scavenged direct-injection gasoline (BUSDIG) engine has been proposed and designed in order to achieve aggressive engine downsizing and down-speeding for higher engine performance and efficiency. In this paper, the design and development of the BUSDIG engine are outlined discussed and the key findings are summarized to highlight the progress of the development of the proposed two-stroke BUSDIG engine. In order to maximize the scavenging performance and produce sufficient in-cylinder flow motions for the fuel/air mixing process in the two-stroke BUSDIG engine, the engine bore/stroke ratio, intake scavenge port angles, and intake plenum design were optimized by three-dimensional (3D) computational fluid dynamics (CFD) simulations. The effects of the opening profiles of the scavenge ports and exhaust valves on controlling the scavenging process were also investigated. In order to achieve optimal in-cylinder fuel stratification, the mixture-formation processes by different injection strategies were studied by using CFD simulations with a calibrated Reitz–Diwakar breakup model. Based on the optimal design of the BUSDIG engine, one-dimensional (1D) engine simulations were performed in Ricardo WAVE. The results showed that a maximum brake thermal efficiency of 47.2% can be achieved for the two-stroke BUSDIG engine with lean combustion and water injection. A peak brake toque of 379 N·m and a peak brake power density of 112 kW·L−1 were achieved at 1600 and 4000 r·min−1, respectively, in the BUSDIG engine with the stoichiometric condition. Keywords: Two-stroke engine, Uniflow scavenging, Engine design, Engine simulation, Scavenging performance, Thermal efficiency
url http://www.sciencedirect.com/science/article/pii/S209580991830715X
work_keys_str_mv AT xinyanwang ahighefficiencytwostrokeengineconcepttheboosteduniflowscavengeddirectinjectiongasolinebusdigenginewithairhybridoperation
AT huazhao ahighefficiencytwostrokeengineconcepttheboosteduniflowscavengeddirectinjectiongasolinebusdigenginewithairhybridoperation
AT xinyanwang highefficiencytwostrokeengineconcepttheboosteduniflowscavengeddirectinjectiongasolinebusdigenginewithairhybridoperation
AT huazhao highefficiencytwostrokeengineconcepttheboosteduniflowscavengeddirectinjectiongasolinebusdigenginewithairhybridoperation
_version_ 1724965169403002880