Investigation into initiation and propagation of cracks in the coated surfaces of spur gears with submodelling and irreversible cohesive-zone modelling techniques

Spur gears are one of the commonly used transmission parts in industry, due to its simplicity in structures and low cost in manufacturing. Due to a performance requirement, a spur gear may be coated with a specific coating arrangement. Under working conditions, the coating on the teeth may be damage...

Full description

Bibliographic Details
Main Authors: Feng Jiling, Qin Yi, Dong Hanshan
Format: Article
Language:English
Published: EDP Sciences 2016-01-01
Series:Manufacturing Review
Subjects:
Online Access:http://dx.doi.org/10.1051/mfreview/2016008
Description
Summary:Spur gears are one of the commonly used transmission parts in industry, due to its simplicity in structures and low cost in manufacturing. Due to a performance requirement, a spur gear may be coated with a specific coating arrangement. Under working conditions, the coating on the teeth may be damaged due to contact fatigue, in the forms such as micro-pitting and/or delamination. The failure mechanism of the coated surface under the gearing contact loading has been investigated intensively through experiment. A comprehensive computational model, which could be used to investigate the propagation of cracks in the coated surfaces, is still lacking. In the research reported in this paper, several finite element modelling techniques, including that for submodelling and irreversible cohesive zone modelling (CZM), have been developed to investigate the failure mechanisms of the coated surfaces of gears under the gearing contact fatigue loading. These techniques not only allow the localized stresses distribution and deformation in the interested locations in the coating and the substrate to be investigated in detail but also enable visual observation on the development of fatigue damages in the coating.
ISSN:2265-4224