A PPARα promoter variant impairs ERR-dependent transactivation and decreases mortality after acute coronary ischemia in patients with diabetes.

Activation of peroxisome proliferator-activated receptor alpha (PPARα) occurs in animal models of diabetes (DM) and is implicated in pathological responses to myocardial ischemia. Using bioinformatics, we identified a single nucleotide polymorphism (SNP) in the PPARα gene promoter (PPARA -54,642 G&g...

Full description

Bibliographic Details
Main Authors: Sharon Cresci, Janice M Huss, Amber L Beitelshees, Philip G Jones, Matt R Minton, Gerald W Dorn, Daniel P Kelly, John A Spertus, Howard L McLeod
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2010-09-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC2933242?pdf=render
Description
Summary:Activation of peroxisome proliferator-activated receptor alpha (PPARα) occurs in animal models of diabetes (DM) and is implicated in pathological responses to myocardial ischemia. Using bioinformatics, we identified a single nucleotide polymorphism (SNP) in the PPARα gene promoter (PPARA -54,642 G>A; rs135561) that altered the consensus sequence for a nuclear receptor binding site. Electrophoretic mobility shift assays showed that the domain bound two known PPARA transcriptional activators, estrogen-related receptor (ERR)-α and -γ and that PPARA G bound with greater affinity than PPARA A (>2-fold; P<0.05). Likewise, promoter-reporter analyses showed enhanced transcriptional activity for PPARA G vs. PPARA A for both ERR-α and -γ (3.1 vs.1.9-fold; P<0.05). Since PPARα activation impairs post-ischemic cardiac function in experimental models of DM, we tested whether decreased PPARA transcription in PPARA A carriers favorably impacted outcome after acute coronary ischemia in 705 patients hospitalized with acute coronary syndromes (ACS; 552 Caucasian, 106 African American). PPARA A allele frequencies were similar to non-diseased subjects. However, PPARA genotype correlated with 5-year mortality in diabetic (22.2% AA vs. 18.8% AG vs. 39.5% GG; P = 0.008), but not non-diabetic (P = 0.96) subjects (genotype by diabetes interaction P = 0.008). In the diabetic ACS subjects, PPARA A carriers had strikingly reduced all-cause mortality compared to PPARA G homozygotes, (unadjusted HR 0.44, 95% CI 0.26-0.75; P = 0.003; adjusted HR 0.48, 95% CI 0.27-0.83; P = 0.009). Consistent with previous descriptions of PPARα in experimental models and human disease, we describe a novel PPARA promoter SNP that decreases transcriptional activation of PPARA and protects against mortality in diabetic patients after ACS.
ISSN:1932-6203