Reconceptualizing Symbolic Magnitude Estimation Training Using Non-declarative Learning Techniques

It is well-documented that mathematics achievement is an important predictor of many positive life outcomes like college graduation, career opportunities, salary, and even citizenship. As such, it is important for researchers and educators to help students succeed in mathematics. Although there are...

Full description

Bibliographic Details
Main Authors: Erin N. Graham, Christopher A. Was
Format: Article
Language:English
Published: Frontiers Media S.A. 2021-04-01
Series:Frontiers in Psychology
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fpsyg.2021.638004/full
Description
Summary:It is well-documented that mathematics achievement is an important predictor of many positive life outcomes like college graduation, career opportunities, salary, and even citizenship. As such, it is important for researchers and educators to help students succeed in mathematics. Although there are undoubtedly many factors that contribute to students' success in mathematics, much of the research and intervention development has focused on variations in instructional techniques. Indeed, even a cursory glance at many educational journals and granting agencies reveals that there is a large amount of time, energy, and resources being spent on determining the best way to convey information through direct, declarative instruction. The proposed project is motivated by recent calls to expand the focus of research in mathematics education beyond direct, declarative instruction. The overarching goal of the presented experiment is to evaluate the efficacy of a novel mathematics intervention designed using principles taken from the literature on non-declarative learning. The intervention combines errorless learning and structured cue fading to help second grade students improve their understanding of symbolic magnitude. Results indicate that students who learned about symbolic magnitude using the novel intervention did better than students who were provided with extensive declarative support. These findings offer preliminary evidence in favor of using learning combination of errorless learning and cue fading techniques in the mathematics classroom.
ISSN:1664-1078