Circular RNA circ_0000228 promotes the malignancy of cervical cancer via microRNA-195-5p/ lysyl oxidase-like protein 2 axis
Circular RNAs (circRNAs) are a class of novel non-coding RNAs that are vital in modulating gene expression and biological processes. Nevertheless, in cervical cancer (CC), the role of circRNA is much less investigated. In this work, circ_0000228 expression in CC is measured and circ_0000228’s functi...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Taylor & Francis Group
2021-01-01
|
Series: | Bioengineered |
Subjects: | |
Online Access: | http://dx.doi.org/10.1080/21655979.2021.1954846 |
Summary: | Circular RNAs (circRNAs) are a class of novel non-coding RNAs that are vital in modulating gene expression and biological processes. Nevertheless, in cervical cancer (CC), the role of circRNA is much less investigated. In this work, circ_0000228 expression in CC is measured and circ_0000228’s function and related mechanism are investigated. Quantitative real-time quantitative polymerase chain reaction (qRT-PCR) was utilized to examine the expression levels of circ_0000228, microRNA-195-5p (miR-195-5p) and lysyl oxidase-like protein 2 (LOXL2). Western blotting was employed to examine LOXL2 protein expression in CC cell lines. CC cell lines with circ_0000228 knockdown were constructed, and the CCK-8 experiment and Transwell experiment were executed to investigate the effect of circ_0000228 on the malignant characteristics of CC cells. Furthermore, a dual-luciferase reporter gene experiment was applied to validate the targeting relationship between circ_0000228 and miR-195-5p, miR-195-5p and LOXL2. In this study, we demonstrated that circ_0000228 showed a remarkable up-modulation in CC tissues and cell lines. Circ_0000228 knockdown repressed the growth and metastatic potential of CC cells. Mechanistically, circ_0000228 facilitated CC progression through sponging miR-195-5p and up-modulating LOXL2 expression. We conclude that circ_0000228 is an oncogenic circRNA, which participates in promoting CC progression via regulating the miR-195-5p/LOXL2 axis. |
---|---|
ISSN: | 2165-5979 2165-5987 |