Stabilization of piecewise-homogeneous Markovian switching CVNNs with mode-dependent delays and incomplete transition rates

This paper is devoted to the problems of exponential stability and stabilization for piecewise-homogeneous Markovian switching complex-valued neural networks with incomplete transition rates (TRs). Both the time-varying delays and the coefficient matrices are switched among finite modes governed by...

Full description

Bibliographic Details
Main Authors: Qiang Li, Jinling Liang, Weiqiang Gong
Format: Article
Language:English
Published: Taylor & Francis Group 2020-01-01
Series:Systems Science & Control Engineering
Subjects:
Online Access:http://dx.doi.org/10.1080/21642583.2020.1737847
Description
Summary:This paper is devoted to the problems of exponential stability and stabilization for piecewise-homogeneous Markovian switching complex-valued neural networks with incomplete transition rates (TRs). Both the time-varying delays and the coefficient matrices are switched among finite modes governed by a piecewise-homogeneous Markov process, where the TRs of the two-level Markov processes are assumed to be time-varying during different intervals. On the basis of an appropriately chosen Lyapunov–Krasovskii functional, some mode-dependent sufficient conditions are presented to guarantee the unforced network to be exponentially mean-square stable. Then, by proposing certain mode-dependent state feedback controller, stabilization criteria are derived through strict mathematical proofs. At the end of the paper, numerical examples are provided to illustrate the effectiveness of the theoretical results.
ISSN:2164-2583