A Global Multilevel Thresholding Using Differential Evolution Approach
Otsu’s function measures the properness of threshold values in multilevel image thresholding. Optimal threshold values are necessary for some applications and a global search algorithm is required. Differential evolution (DE) is an algorithm that has been used successfully for solving this problem....
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2014-01-01
|
Series: | Mathematical Problems in Engineering |
Online Access: | http://dx.doi.org/10.1155/2014/974024 |
Summary: | Otsu’s function measures the properness of threshold values in multilevel image thresholding. Optimal threshold values are necessary for some applications and a global search algorithm is required. Differential evolution (DE) is an algorithm that has been used successfully for solving this problem. Because the difficulty of a problem grows exponentially when the number of thresholds increases, the ordinary DE fails when the number of thresholds is greater than 12. An improved DE, using a new mutation strategy, is proposed to overcome this problem. Experiments were conducted on 20 real images and the number of thresholds varied from 2 to 16. Existing global optimization algorithms were compared with the proposed algorithms, that is, DE, rank-DE, artificial bee colony (ABC), particle swarm optimization (PSO), DPSO, and FODPSO. The experimental results show that the proposed algorithm not only achieves a more successful rate but also yields a lower threshold value distortion than its competitors in the search for optimal threshold values, especially when the number of thresholds is large. |
---|---|
ISSN: | 1024-123X 1563-5147 |