2D COORDINATE TRANSFORMATION USING ARTIFICIAL NEURAL NETWORKS
Two coordinate systems used in Turkey, namely the ED50 (European Datum 1950) and ITRF96 (International Terrestrial Reference Frame 1996) coordinate systems. In most cases, it is necessary to conduct transformation from one coordinate system to another. The artificial neural network (ANN) is a new me...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2016-10-01
|
Series: | The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
Online Access: | http://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-2-W1/183/2016/isprs-archives-XLII-2-W1-183-2016.pdf |
id |
doaj-9be8a628ffcb463da94979793f8bdde0 |
---|---|
record_format |
Article |
spelling |
doaj-9be8a628ffcb463da94979793f8bdde02020-11-24T20:51:58ZengCopernicus PublicationsThe International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences1682-17502194-90342016-10-01XLII-2/W118318610.5194/isprs-archives-XLII-2-W1-183-20162D COORDINATE TRANSFORMATION USING ARTIFICIAL NEURAL NETWORKSB. Konakoglu0L. Cakır1E. Gökalp2KTU, Engineering Faculty, 61080 Trabzon, TurkeyKTU, Engineering Faculty, 61080 Trabzon, TurkeyKTU, Engineering Faculty, 61080 Trabzon, TurkeyTwo coordinate systems used in Turkey, namely the ED50 (European Datum 1950) and ITRF96 (International Terrestrial Reference Frame 1996) coordinate systems. In most cases, it is necessary to conduct transformation from one coordinate system to another. The artificial neural network (ANN) is a new method for coordinate transformation. One of the biggest advantages of the ANN is that it can determine the relationship between two coordinate systems without a mathematical model. The aim of this study was to investigate the performances of three different ANN models (Feed Forward Back Propagation (FFBP), Cascade Forward Back Propagation (CFBP) and Radial Basis Function Neural Network (RBFNN)) with regard to 2D coordinate transformation. To do this, three data sets were used for the same study area, the city of Trabzon. The coordinates of data sets were measured in the ED50 and ITRF96 coordinate systems by using RTK-GPS technique. Performance of each transformation method was investigated by using the coordinate differences between the known and estimated coordinates. The results showed that the ANN algorithms can be used for 2D coordinate transformation in cases where optimum model parameters are selected.http://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-2-W1/183/2016/isprs-archives-XLII-2-W1-183-2016.pdf |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
B. Konakoglu L. Cakır E. Gökalp |
spellingShingle |
B. Konakoglu L. Cakır E. Gökalp 2D COORDINATE TRANSFORMATION USING ARTIFICIAL NEURAL NETWORKS The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
author_facet |
B. Konakoglu L. Cakır E. Gökalp |
author_sort |
B. Konakoglu |
title |
2D COORDINATE TRANSFORMATION USING ARTIFICIAL NEURAL NETWORKS |
title_short |
2D COORDINATE TRANSFORMATION USING ARTIFICIAL NEURAL NETWORKS |
title_full |
2D COORDINATE TRANSFORMATION USING ARTIFICIAL NEURAL NETWORKS |
title_fullStr |
2D COORDINATE TRANSFORMATION USING ARTIFICIAL NEURAL NETWORKS |
title_full_unstemmed |
2D COORDINATE TRANSFORMATION USING ARTIFICIAL NEURAL NETWORKS |
title_sort |
2d coordinate transformation using artificial neural networks |
publisher |
Copernicus Publications |
series |
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
issn |
1682-1750 2194-9034 |
publishDate |
2016-10-01 |
description |
Two coordinate systems used in Turkey, namely the ED50 (European Datum 1950) and ITRF96 (International Terrestrial Reference Frame 1996) coordinate systems. In most cases, it is necessary to conduct transformation from one coordinate system to another. The artificial neural network (ANN) is a new method for coordinate transformation. One of the biggest advantages of the ANN is that it can determine the relationship between two coordinate systems without a mathematical model. The aim of this study was to investigate the performances of three different ANN models (Feed Forward Back Propagation (FFBP), Cascade Forward Back Propagation (CFBP) and Radial Basis Function Neural Network (RBFNN)) with regard to 2D coordinate transformation. To do this, three data sets were used for the same study area, the city of Trabzon. The coordinates of data sets were measured in the ED50 and ITRF96 coordinate systems by using RTK-GPS technique. Performance of each transformation method was investigated by using the coordinate differences between the known and estimated coordinates. The results showed that the ANN algorithms can be used for 2D coordinate transformation in cases where optimum model parameters are selected. |
url |
http://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-2-W1/183/2016/isprs-archives-XLII-2-W1-183-2016.pdf |
work_keys_str_mv |
AT bkonakoglu 2dcoordinatetransformationusingartificialneuralnetworks AT lcakır 2dcoordinatetransformationusingartificialneuralnetworks AT egokalp 2dcoordinatetransformationusingartificialneuralnetworks |
_version_ |
1716800732969041920 |