Summary: | High-speed passenger car requires a lighter weight for improving power performance and reducing fuel consumption; a car with higher-speed and lighter weight will lead to the passenger car more sensitive to the crosswind, which will affect the stability and drivability of the passenger car. This study employs the
fully-coupled method to investigate a passenger car subjected “1-cos” crosswind with consideration of the vehicle motion. Large eddy simulation (LES) and dynamic mesh is adopted to investigate the unsteady aerodynamic, and the vehicle is treated as a three-freedom-system and driver’s control is considered to investigate the vehicle dynamic. The one-way simulation and quasi-steady simulation are also conducted to compare with the fully-coupled simulation. The results of the three simulation methods show large difference. The peak value of the lateral displacement in fully-coupled simulation is the smallest between the three simulation approaches. While the change of aerodynamic loads and vehicle motion in fully-coupled simulation is more complicated than in one-way and quasi-steady simulation. These results clearly indicate the significance of including of the unsteady aerodynamic loads in passenger car moving analysis.
|