The Study of Three-Dimensional Granular Stream Flowing through the Test Hopper-Shaped Target
The experiments are carried out in a three-dimensional channel with a screw conveyor, which plays the role of granular drives for the granular flow system and determines the injection of granular in the test target section. The jam-to-dense transition of granular flow is studied with the different i...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2020-01-01
|
Series: | Science and Technology of Nuclear Installations |
Online Access: | http://dx.doi.org/10.1155/2020/9564879 |
Summary: | The experiments are carried out in a three-dimensional channel with a screw conveyor, which plays the role of granular drives for the granular flow system and determines the injection of granular in the test target section. The jam-to-dense transition of granular flow is studied with the different inclination angle. The results show that, with a fixed diameter of hopper orifice and initial filling position, there is a change from jam to dense when the inclination angle larger than 22°. Variation of the flow rate with elevated frequency of the screw conveyor is further studied. The flow pattern is changed from dilute to dense with increasing rotation frequency of the screw rod. When the rotation frequency is larger than 5 Hz, the flow is dense. The dynamic balance of the interface between dilute to dense granular is observed in the main target section. We further research the dynamic interface by measuring the highest and lowest location with time and also simulate the gravity flow rate and screw conveyor flow rate with EDEM. From the results, we find that the interface between dilute flow and dense flow is influenced by the combined action of crew conveyor flow and dense gravity flow. |
---|---|
ISSN: | 1687-6075 1687-6083 |