Nanostructural Organization of Naturally Occurring Composites—Part II: Silica-Chitin-Based Biocomposites

Investigations of the micro- and nanostructures and chemical composition of the sponge skeletons as examples for natural structural biocomposites are of fundamental scientific relevance. Recently, we show that some demosponges (Verongula gigantea, Aplysina sp.) and glass sponges (Farrea occa, Euplec...

Full description

Bibliographic Details
Main Authors: Hermann Ehrlich, Dorte Janussen, Paul Simon, Vasily V. Bazhenov, Nikolay P. Shapkin, Christiane Erler, Michael Mertig, René Born, Sascha Heinemann, Thomas Hanke, Hartmut Worch, John N. Vournakis
Format: Article
Language:English
Published: Hindawi Limited 2008-01-01
Series:Journal of Nanomaterials
Online Access:http://dx.doi.org/10.1155/2008/670235
Description
Summary:Investigations of the micro- and nanostructures and chemical composition of the sponge skeletons as examples for natural structural biocomposites are of fundamental scientific relevance. Recently, we show that some demosponges (Verongula gigantea, Aplysina sp.) and glass sponges (Farrea occa, Euplectella aspergillum) possess chitin as a component of their skeletons. The main practical approach we used for chitin isolation was based on alkali treatment of corresponding external layers of spicules sponge material with the aim of obtaining alkali-resistant compounds for detailed analysis. Here, we present a detailed study of the structural and physicochemical properties of spicules of the glass sponge Rossella fibulata. The structural similarity of chitin derived from this sponge to invertebrate alpha chitin has been confirmed by us unambiguously using physicochemical and biochemical methods. This is the first report of a silica-chitin composite biomaterial found in Rossella species. Finally, the present work includes a discussion related to strategies for the practical application of silica-chitin-based composites as biomaterials.
ISSN:1687-4110
1687-4129