Simultaneous detection of ozone and nitrogen dioxide by oxygen anion chemical ionization mass spectrometry: a fast-time-response sensor suitable for eddy covariance measurements

<p>We report on the development, characterization, and field deployment of a fast-time-response sensor for measuring ozone (<span class="inline-formula">O<sub>3</sub></span>) and nitrogen dioxide (<span class="inline-formula">NO<sub>2<...

Full description

Bibliographic Details
Main Authors: G. A. Novak, M. P. Vermeuel, T. H. Bertram
Format: Article
Language:English
Published: Copernicus Publications 2020-04-01
Series:Atmospheric Measurement Techniques
Online Access:https://www.atmos-meas-tech.net/13/1887/2020/amt-13-1887-2020.pdf
Description
Summary:<p>We report on the development, characterization, and field deployment of a fast-time-response sensor for measuring ozone (<span class="inline-formula">O<sub>3</sub></span>) and nitrogen dioxide (<span class="inline-formula">NO<sub>2</sub></span>) concentrations utilizing chemical ionization time-of-flight mass spectrometry (CI-ToFMS) with oxygen anion (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">O</mi><mn mathvariant="normal">2</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="17pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="26d368ad2bb5d49e9b215b03d31563a9"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-13-1887-2020-ie00001.svg" width="17pt" height="16pt" src="amt-13-1887-2020-ie00001.png"/></svg:svg></span></span>) reagent ion chemistry. We demonstrate that the oxygen anion chemical ionization mass spectrometer (Ox-CIMS) is highly sensitive to both <span class="inline-formula">O<sub>3</sub></span> (180&thinsp;counts&thinsp;s<span class="inline-formula"><sup>−1</sup></span>&thinsp;pptv<span class="inline-formula"><sup>−1</sup></span>) and <span class="inline-formula">NO<sub>2</sub></span> (97&thinsp;counts&thinsp;s<span class="inline-formula"><sup>−1</sup></span>&thinsp;pptv<span class="inline-formula"><sup>−1</sup></span>), corresponding to detection limits (<span class="inline-formula">3<i>σ</i></span>, 1&thinsp;s averages) of 13 and 9.9&thinsp;pptv, respectively. In both cases, the detection threshold is limited by the magnitude and variability in the background determination. The short-term precision (1&thinsp;s averages) is better than 0.3&thinsp;% at 10&thinsp;ppbv <span class="inline-formula">O<sub>3</sub></span> and 4&thinsp;% at 10&thinsp;pptv <span class="inline-formula">NO<sub>2</sub></span>. We demonstrate that the sensitivity of the <span class="inline-formula">O<sub>3</sub></span> measurement to fluctuations in ambient water vapor and carbon dioxide is negligible for typical conditions encountered in the troposphere. The application of the Ox-CIMS to the measurement of <span class="inline-formula">O<sub>3</sub></span> vertical fluxes over the coastal ocean, via eddy covariance (EC), was tested during the summer of 2018 at Scripps Pier, La Jolla, CA. The observed mean ozone deposition velocity (<span class="inline-formula"><i>v</i><sub>d</sub></span>(<span class="inline-formula">O<sub>3</sub></span>)) was 0.013&thinsp;cm&thinsp;s<span class="inline-formula"><sup>−1</sup></span> with a campaign ensemble limit of detection (LOD) of 0.0027&thinsp;cm&thinsp;s<span class="inline-formula"><sup>−1</sup></span> at the 95&thinsp;% confidence level, from each 27&thinsp;min sampling period LOD. The campaign mean and 1 standard deviation range of <span class="inline-formula">O<sub>3</sub></span> mixing ratios was <span class="inline-formula">41.2±10.1</span>&thinsp;ppbv. Several fast ozone titration events from local NO emissions were sampled where unit conversion of <span class="inline-formula">O<sub>3</sub></span> to <span class="inline-formula">NO<sub>2</sub></span> was observed, highlighting instrument utility as a total odd-oxygen (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M23" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msub><mi mathvariant="normal">O</mi><mi>x</mi></msub><mspace width="0.125em" linebreak="nobreak"/><mo>=</mo><mspace linebreak="nobreak" width="0.125em"/><msub><mi mathvariant="normal">O</mi><mn mathvariant="normal">3</mn></msub><mspace width="0.125em" linebreak="nobreak"/><mo>+</mo><mspace linebreak="nobreak" width="0.125em"/><msub><mi mathvariant="normal">NO</mi><mn mathvariant="normal">2</mn></msub></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="75pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="d5b8caa296edd90f045d885f0525d6c6"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-13-1887-2020-ie00002.svg" width="75pt" height="13pt" src="amt-13-1887-2020-ie00002.png"/></svg:svg></span></span>) sensor. The demonstrated precision, sensitivity, and time resolution of this instrument highlight its potential for direct measurements of <span class="inline-formula">O<sub>3</sub></span> ocean–atmosphere and biosphere–atmosphere exchange from both stationary and mobile sampling platforms.</p>
ISSN:1867-1381
1867-8548