Summary: | Patients with metastatic castration-resistant prostate cancer (mCRPC) have poor outcomes. Docetaxel (DTX)-based therapy is a current standard treatment for patients with mCRPC. Approaches combining conventional chemotherapeutic agents and nanoparticles (NPs), particularly iron oxide NPs, may overcome the serious side effects and drug resistance, resulting in the establishment of new therapeutic strategies. We previously reported the combined effects of Fe3O4 nanoparticles (Fe3O4 NPs) with DTX on prostate cancer cells in vitro. In this study, we investigated the combined effects of Fe3O4 NPs and rapamycin or carboplatin on prostate cancer cells in vitro. Treatment of DU145 and PC-3 cells with Fe3O4 NPs increased intracellular reactive oxygen species (ROS) levels in a concentration-dependent manner. Treatment of both cell lines with 100 μg/mL Fe3O4 NPs for 72 h resulted in significant inhibition of cell viability with a different inhibitory effect. Combination treatments with 100 µg/mL Fe3O4 NPs and 10 µM carboplatin or 10 nM rapamycin in DU145 and PC-3 cells significantly decreased cell viability. Synergistic effects on apoptosis were observed in PC-3 cells treated with Fe3O4 NPs and rapamycin and in DU145 cells with Fe3O4 NPs and carboplatin. These results suggest the possibility of combination therapy with Fe3O4 NPs and various chemotherapeutic agents as a novel therapeutic strategy for patients with mCRPC.
|