Molecular Mechanisms of Acute Oxygen Sensing by Arterial Chemoreceptor Cells. Role of Hif2α

Carotid body glomus cells are multimodal arterial chemoreceptors able to sense and integrate changes in several physical and chemical parameters in the blood. These cells are also essential for O2 homeostasis. Glomus cells are prototypical peripheral O2 sensors necessary to detect hypoxemia and to e...

Full description

Bibliographic Details
Main Authors: Patricia Ortega-Sáenz, Alejandro Moreno-Domínguez, Lin Gao, José López-Barneo
Format: Article
Language:English
Published: Frontiers Media S.A. 2020-11-01
Series:Frontiers in Physiology
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fphys.2020.614893/full
id doaj-9bad6bb655ee4783b192266ca7f2f1d8
record_format Article
spelling doaj-9bad6bb655ee4783b192266ca7f2f1d82020-11-25T04:10:48ZengFrontiers Media S.A.Frontiers in Physiology1664-042X2020-11-011110.3389/fphys.2020.614893614893Molecular Mechanisms of Acute Oxygen Sensing by Arterial Chemoreceptor Cells. Role of Hif2αPatricia Ortega-Sáenz0Patricia Ortega-Sáenz1Patricia Ortega-Sáenz2Alejandro Moreno-Domínguez3Alejandro Moreno-Domínguez4Lin Gao5Lin Gao6Lin Gao7José López-Barneo8José López-Barneo9José López-Barneo10Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, SpainDepartamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, SpainCentro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, SpainInstituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, SpainDepartamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, SpainInstituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, SpainDepartamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, SpainCentro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, SpainInstituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, SpainDepartamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, SpainCentro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, SpainCarotid body glomus cells are multimodal arterial chemoreceptors able to sense and integrate changes in several physical and chemical parameters in the blood. These cells are also essential for O2 homeostasis. Glomus cells are prototypical peripheral O2 sensors necessary to detect hypoxemia and to elicit rapid compensatory responses (hyperventilation and sympathetic activation). The mechanisms underlying acute O2 sensing by glomus cells have been elusive. Using a combination of mouse genetics and single-cell optical and electrophysiological techniques, it has recently been shown that activation of glomus cells by hypoxia relies on the generation of mitochondrial signals (NADH and reactive oxygen species), which modulate membrane ion channels to induce depolarization, Ca2+ influx, and transmitter release. The special sensitivity of glomus cell mitochondria to changes in O2 tension is due to Hif2α-dependent expression of several atypical mitochondrial subunits, which are responsible for an accelerated oxidative metabolism and the strict dependence of mitochondrial complex IV activity on O2 availability. A mitochondrial-to-membrane signaling model of acute O2 sensing has been proposed, which explains existing data and provides a solid foundation for future experimental tests. This model has also unraveled new molecular targets for pharmacological modulation of carotid body activity potentially relevant in the treatment of highly prevalent medical conditions.https://www.frontiersin.org/articles/10.3389/fphys.2020.614893/fullcarotid bodyglomus cellsacute O2 sensingelectron transport chainmitochondrial signalingion channels
collection DOAJ
language English
format Article
sources DOAJ
author Patricia Ortega-Sáenz
Patricia Ortega-Sáenz
Patricia Ortega-Sáenz
Alejandro Moreno-Domínguez
Alejandro Moreno-Domínguez
Lin Gao
Lin Gao
Lin Gao
José López-Barneo
José López-Barneo
José López-Barneo
spellingShingle Patricia Ortega-Sáenz
Patricia Ortega-Sáenz
Patricia Ortega-Sáenz
Alejandro Moreno-Domínguez
Alejandro Moreno-Domínguez
Lin Gao
Lin Gao
Lin Gao
José López-Barneo
José López-Barneo
José López-Barneo
Molecular Mechanisms of Acute Oxygen Sensing by Arterial Chemoreceptor Cells. Role of Hif2α
Frontiers in Physiology
carotid body
glomus cells
acute O2 sensing
electron transport chain
mitochondrial signaling
ion channels
author_facet Patricia Ortega-Sáenz
Patricia Ortega-Sáenz
Patricia Ortega-Sáenz
Alejandro Moreno-Domínguez
Alejandro Moreno-Domínguez
Lin Gao
Lin Gao
Lin Gao
José López-Barneo
José López-Barneo
José López-Barneo
author_sort Patricia Ortega-Sáenz
title Molecular Mechanisms of Acute Oxygen Sensing by Arterial Chemoreceptor Cells. Role of Hif2α
title_short Molecular Mechanisms of Acute Oxygen Sensing by Arterial Chemoreceptor Cells. Role of Hif2α
title_full Molecular Mechanisms of Acute Oxygen Sensing by Arterial Chemoreceptor Cells. Role of Hif2α
title_fullStr Molecular Mechanisms of Acute Oxygen Sensing by Arterial Chemoreceptor Cells. Role of Hif2α
title_full_unstemmed Molecular Mechanisms of Acute Oxygen Sensing by Arterial Chemoreceptor Cells. Role of Hif2α
title_sort molecular mechanisms of acute oxygen sensing by arterial chemoreceptor cells. role of hif2α
publisher Frontiers Media S.A.
series Frontiers in Physiology
issn 1664-042X
publishDate 2020-11-01
description Carotid body glomus cells are multimodal arterial chemoreceptors able to sense and integrate changes in several physical and chemical parameters in the blood. These cells are also essential for O2 homeostasis. Glomus cells are prototypical peripheral O2 sensors necessary to detect hypoxemia and to elicit rapid compensatory responses (hyperventilation and sympathetic activation). The mechanisms underlying acute O2 sensing by glomus cells have been elusive. Using a combination of mouse genetics and single-cell optical and electrophysiological techniques, it has recently been shown that activation of glomus cells by hypoxia relies on the generation of mitochondrial signals (NADH and reactive oxygen species), which modulate membrane ion channels to induce depolarization, Ca2+ influx, and transmitter release. The special sensitivity of glomus cell mitochondria to changes in O2 tension is due to Hif2α-dependent expression of several atypical mitochondrial subunits, which are responsible for an accelerated oxidative metabolism and the strict dependence of mitochondrial complex IV activity on O2 availability. A mitochondrial-to-membrane signaling model of acute O2 sensing has been proposed, which explains existing data and provides a solid foundation for future experimental tests. This model has also unraveled new molecular targets for pharmacological modulation of carotid body activity potentially relevant in the treatment of highly prevalent medical conditions.
topic carotid body
glomus cells
acute O2 sensing
electron transport chain
mitochondrial signaling
ion channels
url https://www.frontiersin.org/articles/10.3389/fphys.2020.614893/full
work_keys_str_mv AT patriciaortegasaenz molecularmechanismsofacuteoxygensensingbyarterialchemoreceptorcellsroleofhif2a
AT patriciaortegasaenz molecularmechanismsofacuteoxygensensingbyarterialchemoreceptorcellsroleofhif2a
AT patriciaortegasaenz molecularmechanismsofacuteoxygensensingbyarterialchemoreceptorcellsroleofhif2a
AT alejandromorenodominguez molecularmechanismsofacuteoxygensensingbyarterialchemoreceptorcellsroleofhif2a
AT alejandromorenodominguez molecularmechanismsofacuteoxygensensingbyarterialchemoreceptorcellsroleofhif2a
AT lingao molecularmechanismsofacuteoxygensensingbyarterialchemoreceptorcellsroleofhif2a
AT lingao molecularmechanismsofacuteoxygensensingbyarterialchemoreceptorcellsroleofhif2a
AT lingao molecularmechanismsofacuteoxygensensingbyarterialchemoreceptorcellsroleofhif2a
AT joselopezbarneo molecularmechanismsofacuteoxygensensingbyarterialchemoreceptorcellsroleofhif2a
AT joselopezbarneo molecularmechanismsofacuteoxygensensingbyarterialchemoreceptorcellsroleofhif2a
AT joselopezbarneo molecularmechanismsofacuteoxygensensingbyarterialchemoreceptorcellsroleofhif2a
_version_ 1724419183060451328