Study of the Boron Distribution and Microstructure of Solidified Al-Si Alloy During the Process of Silicon Purification

The Al-Si melts that contain different silicon contents were solidified with a series of cooling rates, and the boron contents in primary silicon phases and eutectic silicon phases were measured and discussed. The results indicate that the boron content in the eutectic silicon phases is higher than...

Full description

Bibliographic Details
Main Authors: Li Yanlei, Chen Jian, Dai Songyuan
Format: Article
Language:English
Published: De Gruyter 2018-01-01
Series:High Temperature Materials and Processes
Subjects:
Online Access:https://doi.org/10.1515/htmp-2016-0090
Description
Summary:The Al-Si melts that contain different silicon contents were solidified with a series of cooling rates, and the boron contents in primary silicon phases and eutectic silicon phases were measured and discussed. The results indicate that the boron content in the eutectic silicon phases is higher than that in the primary silicon phases when the cooling rate is constant. When the cooling rate decreases, the boron content in the primary silicon phases decreases, but the boron content in the eutectic silicon phases increases. The microstructure observations of solidified ingots show that there is an interface transition layer beside the primary silicon phase, and the average width of the interface transition layer increases with decreasing cooling rate.
ISSN:0334-6455
2191-0324