Combined Effect of Initial Curing Temperature and Crack Width on Chloride Penetration in Reinforced Concrete Beams
Reinforced concrete (RC) structures are gradually being degraded all over the world, largely due to corrosion of the embedded steel bars caused by an attack of chloride penetration. Initial curing would be regarded as one factor influencing chloride diffusion in concrete in combination with cover cr...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
EDP Sciences
2018-01-01
|
Series: | MATEC Web of Conferences |
Online Access: | https://doi.org/10.1051/matecconf/201714202003 |
Summary: | Reinforced concrete (RC) structures are gradually being degraded all over the world, largely due to corrosion of the embedded steel bars caused by an attack of chloride penetration. Initial curing would be regarded as one factor influencing chloride diffusion in concrete in combination with cover cracking that is also of great attention for reinforced structures. In this study, a non-steady state diffusion test of chloride ion involving RC beam specimens with a water-to-cement ratio of 0.5, initial curing temperatures of 5°C or 20°C and three types of crack widths ranging from 0 to 0.2mm was performed. Chloride content at 5°C or was determined. The results show that the higher chloride content was obtained in condition of crack width large than 0.1mm with low initial curing temperature and there are no obvious differences in chloride content when the crack width was not larger than 0.1mm. |
---|---|
ISSN: | 2261-236X |