On Compressed Sensing of Binary Signals for the Unsourced Random Access Channel
Motivated by applications in unsourced random access, this paper develops a novel scheme for the problem of compressed sensing of binary signals. In this problem, the goal is to design a sensing matrix <i>A</i> and a recovery algorithm, such that the sparse binary vector <inline-formu...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-05-01
|
Series: | Entropy |
Subjects: | |
Online Access: | https://www.mdpi.com/1099-4300/23/5/605 |
id |
doaj-9b81c4f2134a4f5ea2c3f7ad242bdc23 |
---|---|
record_format |
Article |
spelling |
doaj-9b81c4f2134a4f5ea2c3f7ad242bdc232021-06-01T00:00:27ZengMDPI AGEntropy1099-43002021-05-012360560510.3390/e23050605On Compressed Sensing of Binary Signals for the Unsourced Random Access ChannelElad Romanov0Or Ordentlich1The Rachel and Selim Benin School of Computer Science and Engineering, Hebrew University of Jerusalem, Jerusalem 919050, IsraelThe Rachel and Selim Benin School of Computer Science and Engineering, Hebrew University of Jerusalem, Jerusalem 919050, IsraelMotivated by applications in unsourced random access, this paper develops a novel scheme for the problem of compressed sensing of binary signals. In this problem, the goal is to design a sensing matrix <i>A</i> and a recovery algorithm, such that the sparse binary vector <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="bold">x</mi></semantics></math></inline-formula> can be recovered reliably from the measurements <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="bold">y</mi><mo>=</mo><mi>A</mi><mi mathvariant="bold">x</mi><mo>+</mo><mi>σ</mi><mi mathvariant="bold">z</mi></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="bold">z</mi></semantics></math></inline-formula> is additive white Gaussian noise. We propose to design <i>A</i> as a parity check matrix of a low-density parity-check code (LDPC) and to recover <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="bold">x</mi></semantics></math></inline-formula> from the measurements <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="bold">y</mi></semantics></math></inline-formula> using a Markov chain Monte Carlo algorithm, which runs relatively fast due to the sparse structure of <i>A</i>. The performance of our scheme is comparable to state-of-the-art schemes, which use dense sensing matrices, while enjoying the advantages of using a sparse sensing matrix.https://www.mdpi.com/1099-4300/23/5/605unsourced random accesscompressed sensinglow-density parity-check codesglauber dynamics |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Elad Romanov Or Ordentlich |
spellingShingle |
Elad Romanov Or Ordentlich On Compressed Sensing of Binary Signals for the Unsourced Random Access Channel Entropy unsourced random access compressed sensing low-density parity-check codes glauber dynamics |
author_facet |
Elad Romanov Or Ordentlich |
author_sort |
Elad Romanov |
title |
On Compressed Sensing of Binary Signals for the Unsourced Random Access Channel |
title_short |
On Compressed Sensing of Binary Signals for the Unsourced Random Access Channel |
title_full |
On Compressed Sensing of Binary Signals for the Unsourced Random Access Channel |
title_fullStr |
On Compressed Sensing of Binary Signals for the Unsourced Random Access Channel |
title_full_unstemmed |
On Compressed Sensing of Binary Signals for the Unsourced Random Access Channel |
title_sort |
on compressed sensing of binary signals for the unsourced random access channel |
publisher |
MDPI AG |
series |
Entropy |
issn |
1099-4300 |
publishDate |
2021-05-01 |
description |
Motivated by applications in unsourced random access, this paper develops a novel scheme for the problem of compressed sensing of binary signals. In this problem, the goal is to design a sensing matrix <i>A</i> and a recovery algorithm, such that the sparse binary vector <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="bold">x</mi></semantics></math></inline-formula> can be recovered reliably from the measurements <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="bold">y</mi><mo>=</mo><mi>A</mi><mi mathvariant="bold">x</mi><mo>+</mo><mi>σ</mi><mi mathvariant="bold">z</mi></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="bold">z</mi></semantics></math></inline-formula> is additive white Gaussian noise. We propose to design <i>A</i> as a parity check matrix of a low-density parity-check code (LDPC) and to recover <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="bold">x</mi></semantics></math></inline-formula> from the measurements <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="bold">y</mi></semantics></math></inline-formula> using a Markov chain Monte Carlo algorithm, which runs relatively fast due to the sparse structure of <i>A</i>. The performance of our scheme is comparable to state-of-the-art schemes, which use dense sensing matrices, while enjoying the advantages of using a sparse sensing matrix. |
topic |
unsourced random access compressed sensing low-density parity-check codes glauber dynamics |
url |
https://www.mdpi.com/1099-4300/23/5/605 |
work_keys_str_mv |
AT eladromanov oncompressedsensingofbinarysignalsfortheunsourcedrandomaccesschannel AT orordentlich oncompressedsensingofbinarysignalsfortheunsourcedrandomaccesschannel |
_version_ |
1721416021615575040 |