On Compressed Sensing of Binary Signals for the Unsourced Random Access Channel

Motivated by applications in unsourced random access, this paper develops a novel scheme for the problem of compressed sensing of binary signals. In this problem, the goal is to design a sensing matrix <i>A</i> and a recovery algorithm, such that the sparse binary vector <inline-formu...

Full description

Bibliographic Details
Main Authors: Elad Romanov, Or Ordentlich
Format: Article
Language:English
Published: MDPI AG 2021-05-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/23/5/605
id doaj-9b81c4f2134a4f5ea2c3f7ad242bdc23
record_format Article
spelling doaj-9b81c4f2134a4f5ea2c3f7ad242bdc232021-06-01T00:00:27ZengMDPI AGEntropy1099-43002021-05-012360560510.3390/e23050605On Compressed Sensing of Binary Signals for the Unsourced Random Access ChannelElad Romanov0Or Ordentlich1The Rachel and Selim Benin School of Computer Science and Engineering, Hebrew University of Jerusalem, Jerusalem 919050, IsraelThe Rachel and Selim Benin School of Computer Science and Engineering, Hebrew University of Jerusalem, Jerusalem 919050, IsraelMotivated by applications in unsourced random access, this paper develops a novel scheme for the problem of compressed sensing of binary signals. In this problem, the goal is to design a sensing matrix <i>A</i> and a recovery algorithm, such that the sparse binary vector <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="bold">x</mi></semantics></math></inline-formula> can be recovered reliably from the measurements <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="bold">y</mi><mo>=</mo><mi>A</mi><mi mathvariant="bold">x</mi><mo>+</mo><mi>σ</mi><mi mathvariant="bold">z</mi></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="bold">z</mi></semantics></math></inline-formula> is additive white Gaussian noise. We propose to design <i>A</i> as a parity check matrix of a low-density parity-check code (LDPC) and to recover <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="bold">x</mi></semantics></math></inline-formula> from the measurements <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="bold">y</mi></semantics></math></inline-formula> using a Markov chain Monte Carlo algorithm, which runs relatively fast due to the sparse structure of <i>A</i>. The performance of our scheme is comparable to state-of-the-art schemes, which use dense sensing matrices, while enjoying the advantages of using a sparse sensing matrix.https://www.mdpi.com/1099-4300/23/5/605unsourced random accesscompressed sensinglow-density parity-check codesglauber dynamics
collection DOAJ
language English
format Article
sources DOAJ
author Elad Romanov
Or Ordentlich
spellingShingle Elad Romanov
Or Ordentlich
On Compressed Sensing of Binary Signals for the Unsourced Random Access Channel
Entropy
unsourced random access
compressed sensing
low-density parity-check codes
glauber dynamics
author_facet Elad Romanov
Or Ordentlich
author_sort Elad Romanov
title On Compressed Sensing of Binary Signals for the Unsourced Random Access Channel
title_short On Compressed Sensing of Binary Signals for the Unsourced Random Access Channel
title_full On Compressed Sensing of Binary Signals for the Unsourced Random Access Channel
title_fullStr On Compressed Sensing of Binary Signals for the Unsourced Random Access Channel
title_full_unstemmed On Compressed Sensing of Binary Signals for the Unsourced Random Access Channel
title_sort on compressed sensing of binary signals for the unsourced random access channel
publisher MDPI AG
series Entropy
issn 1099-4300
publishDate 2021-05-01
description Motivated by applications in unsourced random access, this paper develops a novel scheme for the problem of compressed sensing of binary signals. In this problem, the goal is to design a sensing matrix <i>A</i> and a recovery algorithm, such that the sparse binary vector <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="bold">x</mi></semantics></math></inline-formula> can be recovered reliably from the measurements <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="bold">y</mi><mo>=</mo><mi>A</mi><mi mathvariant="bold">x</mi><mo>+</mo><mi>σ</mi><mi mathvariant="bold">z</mi></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="bold">z</mi></semantics></math></inline-formula> is additive white Gaussian noise. We propose to design <i>A</i> as a parity check matrix of a low-density parity-check code (LDPC) and to recover <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="bold">x</mi></semantics></math></inline-formula> from the measurements <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="bold">y</mi></semantics></math></inline-formula> using a Markov chain Monte Carlo algorithm, which runs relatively fast due to the sparse structure of <i>A</i>. The performance of our scheme is comparable to state-of-the-art schemes, which use dense sensing matrices, while enjoying the advantages of using a sparse sensing matrix.
topic unsourced random access
compressed sensing
low-density parity-check codes
glauber dynamics
url https://www.mdpi.com/1099-4300/23/5/605
work_keys_str_mv AT eladromanov oncompressedsensingofbinarysignalsfortheunsourcedrandomaccesschannel
AT orordentlich oncompressedsensingofbinarysignalsfortheunsourcedrandomaccesschannel
_version_ 1721416021615575040