A Pellet 3D Printer: Device Design and Process Parameters Optimization

A novel pellet 3D printer was first developed, and its structure was constructed out of three main parts. The material used in this device was polycaprolactone (PCL), which was praised for its good characteristics in the biomanufacturing and chemical industries. Three essential parameters that had i...

Full description

Bibliographic Details
Main Authors: Shiyi Liu, Peng Zhao, Senyang Wu, Chengqian Zhang, Jianzhong Fu, Zichen Chen
Format: Article
Language:English
Published: Hindawi-Wiley 2019-01-01
Series:Advances in Polymer Technology
Online Access:http://dx.doi.org/10.1155/2019/5075327
Description
Summary:A novel pellet 3D printer was first developed, and its structure was constructed out of three main parts. The material used in this device was polycaprolactone (PCL), which was praised for its good characteristics in the biomanufacturing and chemical industries. Three essential parameters that had important effects on the diameter of the printed fibers were systematically studied using a L9(34) orthogonal design table. Using the fused deposition modelling (FDM) method, some products were printed with this machine. Results showed that the stepper motor’s speed had the most significant effect on the diameter of the printed fibers. The optimal parameters were, a stepper motor speed of 1.256 mm3 s−1, a nozzle moving speed of 9.6 mm s−1, and 1.1 mm of height between the nozzle and the platform. Defects like gaps, warping, and poor surface quality were found to be related to different combinations of process parameters. By using the developed pellet 3D printer, the pre-step of making filaments can be avoided, which will bring convenience to FDM 3D printing.
ISSN:0730-6679
1098-2329