Infinitely many solutions for non-local problems with broken symmetry

The aim of this paper is to investigate the existence of solutions of the non-local elliptic problem

Bibliographic Details
Main Authors: Bartolo Rossella, De Nápoli Pablo L., Salvatore Addolorata
Format: Article
Language:English
Published: De Gruyter 2018-08-01
Series:Advances in Nonlinear Analysis
Subjects:
Online Access:https://doi.org/10.1515/anona-2016-0106
id doaj-9b785fb17aeb4292b37db0ccfd1ba0b2
record_format Article
spelling doaj-9b785fb17aeb4292b37db0ccfd1ba0b22021-09-06T19:39:54ZengDe GruyterAdvances in Nonlinear Analysis2191-94962191-950X2018-08-017335336410.1515/anona-2016-0106Infinitely many solutions for non-local problems with broken symmetryBartolo Rossella0De Nápoli Pablo L.1Salvatore Addolorata2Dipartimento di Meccanica, Matematica e Management Politecnico di Bari, Via E. Orabona 4, 70125Bari, ItalyIMAS (UBA-CONICET) and Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, 1428Buenos Aires, ArgentinaDipartimento di Matematica, Università degli Studi di Bari “Aldo Moro”, Via E. Orabona 4, 70125Bari, ItalyThe aim of this paper is to investigate the existence of solutions of the non-local elliptic problemhttps://doi.org/10.1515/anona-2016-0106fractional laplace operatorvariational methodsperturbative method35s15 58e05 45g05
collection DOAJ
language English
format Article
sources DOAJ
author Bartolo Rossella
De Nápoli Pablo L.
Salvatore Addolorata
spellingShingle Bartolo Rossella
De Nápoli Pablo L.
Salvatore Addolorata
Infinitely many solutions for non-local problems with broken symmetry
Advances in Nonlinear Analysis
fractional laplace operator
variational methods
perturbative method
35s15
58e05
45g05
author_facet Bartolo Rossella
De Nápoli Pablo L.
Salvatore Addolorata
author_sort Bartolo Rossella
title Infinitely many solutions for non-local problems with broken symmetry
title_short Infinitely many solutions for non-local problems with broken symmetry
title_full Infinitely many solutions for non-local problems with broken symmetry
title_fullStr Infinitely many solutions for non-local problems with broken symmetry
title_full_unstemmed Infinitely many solutions for non-local problems with broken symmetry
title_sort infinitely many solutions for non-local problems with broken symmetry
publisher De Gruyter
series Advances in Nonlinear Analysis
issn 2191-9496
2191-950X
publishDate 2018-08-01
description The aim of this paper is to investigate the existence of solutions of the non-local elliptic problem
topic fractional laplace operator
variational methods
perturbative method
35s15
58e05
45g05
url https://doi.org/10.1515/anona-2016-0106
work_keys_str_mv AT bartolorossella infinitelymanysolutionsfornonlocalproblemswithbrokensymmetry
AT denapolipablol infinitelymanysolutionsfornonlocalproblemswithbrokensymmetry
AT salvatoreaddolorata infinitelymanysolutionsfornonlocalproblemswithbrokensymmetry
_version_ 1717769809543823360