Infinitely many solutions for non-local problems with broken symmetry
The aim of this paper is to investigate the existence of solutions of the non-local elliptic problem
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
De Gruyter
2018-08-01
|
Series: | Advances in Nonlinear Analysis |
Subjects: | |
Online Access: | https://doi.org/10.1515/anona-2016-0106 |
id |
doaj-9b785fb17aeb4292b37db0ccfd1ba0b2 |
---|---|
record_format |
Article |
spelling |
doaj-9b785fb17aeb4292b37db0ccfd1ba0b22021-09-06T19:39:54ZengDe GruyterAdvances in Nonlinear Analysis2191-94962191-950X2018-08-017335336410.1515/anona-2016-0106Infinitely many solutions for non-local problems with broken symmetryBartolo Rossella0De Nápoli Pablo L.1Salvatore Addolorata2Dipartimento di Meccanica, Matematica e Management Politecnico di Bari, Via E. Orabona 4, 70125Bari, ItalyIMAS (UBA-CONICET) and Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, 1428Buenos Aires, ArgentinaDipartimento di Matematica, Università degli Studi di Bari “Aldo Moro”, Via E. Orabona 4, 70125Bari, ItalyThe aim of this paper is to investigate the existence of solutions of the non-local elliptic problemhttps://doi.org/10.1515/anona-2016-0106fractional laplace operatorvariational methodsperturbative method35s15 58e05 45g05 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Bartolo Rossella De Nápoli Pablo L. Salvatore Addolorata |
spellingShingle |
Bartolo Rossella De Nápoli Pablo L. Salvatore Addolorata Infinitely many solutions for non-local problems with broken symmetry Advances in Nonlinear Analysis fractional laplace operator variational methods perturbative method 35s15 58e05 45g05 |
author_facet |
Bartolo Rossella De Nápoli Pablo L. Salvatore Addolorata |
author_sort |
Bartolo Rossella |
title |
Infinitely many solutions for non-local problems with broken symmetry |
title_short |
Infinitely many solutions for non-local problems with broken symmetry |
title_full |
Infinitely many solutions for non-local problems with broken symmetry |
title_fullStr |
Infinitely many solutions for non-local problems with broken symmetry |
title_full_unstemmed |
Infinitely many solutions for non-local problems with broken symmetry |
title_sort |
infinitely many solutions for non-local problems with broken symmetry |
publisher |
De Gruyter |
series |
Advances in Nonlinear Analysis |
issn |
2191-9496 2191-950X |
publishDate |
2018-08-01 |
description |
The aim of this paper is to investigate the existence of solutions of the non-local elliptic problem |
topic |
fractional laplace operator variational methods perturbative method 35s15 58e05 45g05 |
url |
https://doi.org/10.1515/anona-2016-0106 |
work_keys_str_mv |
AT bartolorossella infinitelymanysolutionsfornonlocalproblemswithbrokensymmetry AT denapolipablol infinitelymanysolutionsfornonlocalproblemswithbrokensymmetry AT salvatoreaddolorata infinitelymanysolutionsfornonlocalproblemswithbrokensymmetry |
_version_ |
1717769809543823360 |