Confinement in 4D: An Attempt at Classical Understanding

In this review, we revisit our approach to constructing an effective theory for Abelian and Non-Abelian gauge theories in 4D. Our goal is to have an effective theory that provides a simple classical picture of the main qualitatively important features of these theories. We set out to ensure the pres...

Full description

Bibliographic Details
Main Authors: Ibrahim Burak Ilhan, Alex Kovner
Format: Article
Language:English
Published: MDPI AG 2021-08-01
Series:Universe
Subjects:
Online Access:https://www.mdpi.com/2218-1997/7/8/291
Description
Summary:In this review, we revisit our approach to constructing an effective theory for Abelian and Non-Abelian gauge theories in 4D. Our goal is to have an effective theory that provides a simple classical picture of the main qualitatively important features of these theories. We set out to ensure the presence of the massless photons—Goldstone bosons in Abelian theory and their disappearance in the Non-Abelian case—accompanied by the formation of confining strings between charged states. Our formulation avoids using vector fields and instead operates with the basic degrees of freedom that are the scalar fields of a nonlinear <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>σ</mi></semantics></math></inline-formula>-model. The Mark 1 model we study turns out to have a large global symmetry group-the 2D diffeomorphism invariance in the Abelian limit, which is isomorphic to the group of all canonical transformations in the classical two dimensional phase space. This symmetry is not present in QED, and we eliminate it by “gauging” this infinite dimensional global group. Introducing additional modifications to the model (Mark 2), we are able to prove that the “Abelian” version is equivalent to the theory of a free photon. Achieving the desired property in the “Non-Abelian” regime turns out to be tricky. We are able to introduce a perturbation that leads to the formation of confining strings in our Mark 1 model. These strings have somewhat unusual properties, in that their profile does not decay exponentially away from the center of the string. In addition, the perturbation explicitly breaks the diffeomorphism invariance. Preserving this invariance in the gauged model as well as achieving confining strings in Mark 2 model remains an open question.
ISSN:2218-1997