The Rayleigh Fading Channel Prediction via Deep Learning

This paper presents a multi-time channel prediction system based on backpropagation (BP) neural network with multi-hidden layers, which can predict channel information effectively and benefit for massive MIMO performance, power control, and artificial noise physical layer security scheme design. Mea...

Full description

Bibliographic Details
Main Authors: Run-Fa Liao, Hong Wen, Jinsong Wu, Huanhuan Song, Fei Pan, Lian Dong
Format: Article
Language:English
Published: Hindawi-Wiley 2018-01-01
Series:Wireless Communications and Mobile Computing
Online Access:http://dx.doi.org/10.1155/2018/6497340
Description
Summary:This paper presents a multi-time channel prediction system based on backpropagation (BP) neural network with multi-hidden layers, which can predict channel information effectively and benefit for massive MIMO performance, power control, and artificial noise physical layer security scheme design. Meanwhile, an early stopping strategy to avoid the overfitting of BP neural network is introduced. By comparing the predicted normalized mean square error (NMSE), the simulation results show that the performances of the proposed scheme are extremely improved. Moreover, a sparse channel sample construction method is proposed, which saves system resources effectively without weakening performances.
ISSN:1530-8669
1530-8677