Allowable solar flux densities for molten-salt receivers: Input to the aiming strategy

Solar Power Tower technology requires accurate models and tools to assist in design and operation stages. The heliostat field aiming strategy seeks the maximization of the thermal output from the receiver, while preventing its permanent damage because of thermal stress and corrosion in molten salt r...

Full description

Bibliographic Details
Main Authors: Alberto Sánchez-González, María Reyes Rodríguez-Sánchez, Domingo Santana
Format: Article
Language:English
Published: Elsevier 2020-03-01
Series:Results in Engineering
Online Access:http://www.sciencedirect.com/science/article/pii/S259012301930074X
Description
Summary:Solar Power Tower technology requires accurate models and tools to assist in design and operation stages. The heliostat field aiming strategy seeks the maximization of the thermal output from the receiver, while preventing its permanent damage because of thermal stress and corrosion in molten salt receivers. These two limitations are translated into Allowable Flux Densities (AFD), which can be handled by the aiming strategy.This paper explains the methodology to determine AFDs, and analyzes the influence of tube geometry and material. AFD by corrosion is slightly lower in Haynes 230 than Inconel 625 and austenitic alloys. On the contrary, HA230 has better performance than In625 under thermal stress. Increment of tube wall thickness diminishes the AFD: slightly by corrosion, but significantly by thermal stress.The generated AFD databases feed the aiming model, herein applied to Gemasolar case study. In the cylindrical receiver, first northern panels are limited by thermal stress, while the last ones by corrosion. Under optimized aiming, HA230 receiver tubes produce equivalent thermal output than In625. Keywords: Solar power tower, Molten-salt corrosion, Thermal stress, Tube alloy and geometry, Heliostat field aiming strategy
ISSN:2590-1230