Arioc: High-concurrency short-read alignment on multiple GPUs.
In large DNA sequence repositories, archival data storage is often coupled with computers that provide 40 or more CPU threads and multiple GPU (general-purpose graphics processing unit) devices. This presents an opportunity for DNA sequence alignment software to exploit high-concurrency hardware to...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2020-11-01
|
Series: | PLoS Computational Biology |
Online Access: | https://doi.org/10.1371/journal.pcbi.1008383 |
id |
doaj-9b343b6567e245fc8cd208b8cba6acf2 |
---|---|
record_format |
Article |
spelling |
doaj-9b343b6567e245fc8cd208b8cba6acf22021-04-21T15:45:30ZengPublic Library of Science (PLoS)PLoS Computational Biology1553-734X1553-73582020-11-011611e100838310.1371/journal.pcbi.1008383Arioc: High-concurrency short-read alignment on multiple GPUs.Richard WiltonAlexander S SzalayIn large DNA sequence repositories, archival data storage is often coupled with computers that provide 40 or more CPU threads and multiple GPU (general-purpose graphics processing unit) devices. This presents an opportunity for DNA sequence alignment software to exploit high-concurrency hardware to generate short-read alignments at high speed. Arioc, a GPU-accelerated short-read aligner, can compute WGS (whole-genome sequencing) alignments ten times faster than comparable CPU-only alignment software. When two or more GPUs are available, Arioc's speed increases proportionately because the software executes concurrently on each available GPU device. We have adapted Arioc to recent multi-GPU hardware architectures that support high-bandwidth peer-to-peer memory accesses among multiple GPUs. By modifying Arioc's implementation to exploit this GPU memory architecture we obtained a further 1.8x-2.9x increase in overall alignment speeds. With this additional acceleration, Arioc computes two million short-read alignments per second in a four-GPU system; it can align the reads from a human WGS sequencer run-over 500 million 150nt paired-end reads-in less than 15 minutes. As WGS data accumulates exponentially and high-concurrency computational resources become widespread, Arioc addresses a growing need for timely computation in the short-read data analysis toolchain.https://doi.org/10.1371/journal.pcbi.1008383 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Richard Wilton Alexander S Szalay |
spellingShingle |
Richard Wilton Alexander S Szalay Arioc: High-concurrency short-read alignment on multiple GPUs. PLoS Computational Biology |
author_facet |
Richard Wilton Alexander S Szalay |
author_sort |
Richard Wilton |
title |
Arioc: High-concurrency short-read alignment on multiple GPUs. |
title_short |
Arioc: High-concurrency short-read alignment on multiple GPUs. |
title_full |
Arioc: High-concurrency short-read alignment on multiple GPUs. |
title_fullStr |
Arioc: High-concurrency short-read alignment on multiple GPUs. |
title_full_unstemmed |
Arioc: High-concurrency short-read alignment on multiple GPUs. |
title_sort |
arioc: high-concurrency short-read alignment on multiple gpus. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS Computational Biology |
issn |
1553-734X 1553-7358 |
publishDate |
2020-11-01 |
description |
In large DNA sequence repositories, archival data storage is often coupled with computers that provide 40 or more CPU threads and multiple GPU (general-purpose graphics processing unit) devices. This presents an opportunity for DNA sequence alignment software to exploit high-concurrency hardware to generate short-read alignments at high speed. Arioc, a GPU-accelerated short-read aligner, can compute WGS (whole-genome sequencing) alignments ten times faster than comparable CPU-only alignment software. When two or more GPUs are available, Arioc's speed increases proportionately because the software executes concurrently on each available GPU device. We have adapted Arioc to recent multi-GPU hardware architectures that support high-bandwidth peer-to-peer memory accesses among multiple GPUs. By modifying Arioc's implementation to exploit this GPU memory architecture we obtained a further 1.8x-2.9x increase in overall alignment speeds. With this additional acceleration, Arioc computes two million short-read alignments per second in a four-GPU system; it can align the reads from a human WGS sequencer run-over 500 million 150nt paired-end reads-in less than 15 minutes. As WGS data accumulates exponentially and high-concurrency computational resources become widespread, Arioc addresses a growing need for timely computation in the short-read data analysis toolchain. |
url |
https://doi.org/10.1371/journal.pcbi.1008383 |
work_keys_str_mv |
AT richardwilton ariochighconcurrencyshortreadalignmentonmultiplegpus AT alexandersszalay ariochighconcurrencyshortreadalignmentonmultiplegpus |
_version_ |
1714667048328495104 |