Pulsatile Flow of a Two-Fluid Model for Blood Flow through Arterial Stenosis

Pulsatile flow of a two-fluid model for blood flow through stenosed narrow arteries is studied through a mathematical analysis. Blood is treated as two-phase fluid model with the suspension of all the erythrocytes in the as Herschel-Bulkley fluid and the plasma in the peripheral layer as a Newtonian...

Full description

Bibliographic Details
Main Author: D. S. Sankar
Format: Article
Language:English
Published: Hindawi Limited 2010-01-01
Series:Mathematical Problems in Engineering
Online Access:http://dx.doi.org/10.1155/2010/465835
Description
Summary:Pulsatile flow of a two-fluid model for blood flow through stenosed narrow arteries is studied through a mathematical analysis. Blood is treated as two-phase fluid model with the suspension of all the erythrocytes in the as Herschel-Bulkley fluid and the plasma in the peripheral layer as a Newtonian fluid. Perturbation method is used to solve the system of nonlinear partial differential equations. The expressions for velocity, wall shear stress, plug core radius, flow rate and resistance to flow are obtained. The variations of these flow quantities with stenosis size, yield stress, axial distance, pulsatility and amplitude are analyzed. It is found that pressure drop, plug core radius, wall shear stress and resistance to flow increase as the yield stress or stenosis size increases while all other parameters held constant. It is observed that the percentage of increase in the magnitudes of the wall shear stress and resistance to flow over the uniform diameter tube is considerably very low for the present two-fluid model compared with that of the single-fluid model of the Herschel-Bulkley fluid. Thus, the presence of the peripheral layer helps in the functioning of the diseased arterial system.
ISSN:1024-123X
1563-5147