A plasma survey using 38 PfEMP1 domains reveals frequent recognition of the Plasmodium falciparum antigen VAR2CSA among young Tanzanian children.

PfEMP1 proteins comprise a family of variant antigens that appear on the surface of P. falciparum-infected erythrocytes and bind to multiple host receptors. Using a mammalian expression system and BioPlex technology, we developed an array of 24 protein constructs representing 38 PfEMP1 domains for h...

Full description

Bibliographic Details
Main Authors: Andrew V Oleinikov, Valentina V Voronkova, Isaac Tyler Frye, Emily Amos, Robert Morrison, Michal Fried, Patrick E Duffy
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2012-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC3266279?pdf=render
Description
Summary:PfEMP1 proteins comprise a family of variant antigens that appear on the surface of P. falciparum-infected erythrocytes and bind to multiple host receptors. Using a mammalian expression system and BioPlex technology, we developed an array of 24 protein constructs representing 38 PfEMP1 domains for high throughput analyses of receptor binding as well as total and functional antibody responses. We analyzed the reactivity of 561 plasma samples from 378 young Tanzanian children followed up to maximum 192 weeks of life in a longitudinal birth cohort. Surprisingly, reactivity to the DBL5 domain of VAR2CSA, a pregnancy malaria vaccine candidate, was most common, and the prevalence of reactivity was stable throughout early childhood. Reactivity to all other PfEMP1 constructs increased with age. Antibodies to the DBL2βC2(PF11_0521) domain, measured as plasma reactivity or plasma inhibition of ICAM1 binding, predicted reduced risk of hospitalization for severe or moderately severe malaria. These data suggest a role for VAR2CSA in childhood malaria and implicate DBL2βC2(PF11_0521) in protective immunity.
ISSN:1932-6203