Vapor-Phase Polymerized Poly(3,4-Ethylenedioxythiophene) on a Nickel Nanowire Array Film: Aqueous Symmetrical Pseudocapacitors with Superior Performance.

Three-dimensional (3D) nanometal scaffolds have gained considerable attention recently because of their promising application in high-performance supercapacitors compared with plain metal foils. Here, a highly oriented nickel (Ni) nanowire array (NNA) film was prepared via a simple magnetic-field-dr...

Full description

Bibliographic Details
Main Authors: Qisen Xie, Yang Xu, Zhipeng Wang, Chao Xu, Peichao Zou, Ziyin Lin, Chenjie Xu, Cheng Yang, Feiyu Kang, Ching-Ping Wong
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2016-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC5115749?pdf=render
id doaj-9b1f015b443b477bb2d94671fc3b695a
record_format Article
spelling doaj-9b1f015b443b477bb2d94671fc3b695a2020-11-25T00:08:37ZengPublic Library of Science (PLoS)PLoS ONE1932-62032016-01-011111e016652910.1371/journal.pone.0166529Vapor-Phase Polymerized Poly(3,4-Ethylenedioxythiophene) on a Nickel Nanowire Array Film: Aqueous Symmetrical Pseudocapacitors with Superior Performance.Qisen XieYang XuZhipeng WangChao XuPeichao ZouZiyin LinChenjie XuCheng YangFeiyu KangChing-Ping WongThree-dimensional (3D) nanometal scaffolds have gained considerable attention recently because of their promising application in high-performance supercapacitors compared with plain metal foils. Here, a highly oriented nickel (Ni) nanowire array (NNA) film was prepared via a simple magnetic-field-driven aqueous solution deposition process and then used as the electrode scaffold for the vapor-phase polymerization of 3,4-ethylenedioxythiophene (EDOT). Benefiting from the unique 3D open porous structure of the NNA that provided a highly conductive and oriented backbone for facile electron transfer and fast ion diffusion, the as-obtained poly(3,4-ethylenedioxythiophene) (PEDOT) exhibited an ultra-long cycle life (95.7% retention of specific capacitance after 20 000 charge/discharge cycles at 5 A/g) and superior capacitive performance. Furthermore, two electrodes were fabricated into an aqueous symmetric supercapacitor, which delivered a high energy density (30.38 Wh/kg at 529.49 W/kg) and superior long-term cycle ability (13.8% loss of capacity after 20 000 cycles). Based on these results, the vapor-phase polymerization of EDOT on metal nanowire array current collectors has great potential for use in supercapacitors with enhanced performance.http://europepmc.org/articles/PMC5115749?pdf=render
collection DOAJ
language English
format Article
sources DOAJ
author Qisen Xie
Yang Xu
Zhipeng Wang
Chao Xu
Peichao Zou
Ziyin Lin
Chenjie Xu
Cheng Yang
Feiyu Kang
Ching-Ping Wong
spellingShingle Qisen Xie
Yang Xu
Zhipeng Wang
Chao Xu
Peichao Zou
Ziyin Lin
Chenjie Xu
Cheng Yang
Feiyu Kang
Ching-Ping Wong
Vapor-Phase Polymerized Poly(3,4-Ethylenedioxythiophene) on a Nickel Nanowire Array Film: Aqueous Symmetrical Pseudocapacitors with Superior Performance.
PLoS ONE
author_facet Qisen Xie
Yang Xu
Zhipeng Wang
Chao Xu
Peichao Zou
Ziyin Lin
Chenjie Xu
Cheng Yang
Feiyu Kang
Ching-Ping Wong
author_sort Qisen Xie
title Vapor-Phase Polymerized Poly(3,4-Ethylenedioxythiophene) on a Nickel Nanowire Array Film: Aqueous Symmetrical Pseudocapacitors with Superior Performance.
title_short Vapor-Phase Polymerized Poly(3,4-Ethylenedioxythiophene) on a Nickel Nanowire Array Film: Aqueous Symmetrical Pseudocapacitors with Superior Performance.
title_full Vapor-Phase Polymerized Poly(3,4-Ethylenedioxythiophene) on a Nickel Nanowire Array Film: Aqueous Symmetrical Pseudocapacitors with Superior Performance.
title_fullStr Vapor-Phase Polymerized Poly(3,4-Ethylenedioxythiophene) on a Nickel Nanowire Array Film: Aqueous Symmetrical Pseudocapacitors with Superior Performance.
title_full_unstemmed Vapor-Phase Polymerized Poly(3,4-Ethylenedioxythiophene) on a Nickel Nanowire Array Film: Aqueous Symmetrical Pseudocapacitors with Superior Performance.
title_sort vapor-phase polymerized poly(3,4-ethylenedioxythiophene) on a nickel nanowire array film: aqueous symmetrical pseudocapacitors with superior performance.
publisher Public Library of Science (PLoS)
series PLoS ONE
issn 1932-6203
publishDate 2016-01-01
description Three-dimensional (3D) nanometal scaffolds have gained considerable attention recently because of their promising application in high-performance supercapacitors compared with plain metal foils. Here, a highly oriented nickel (Ni) nanowire array (NNA) film was prepared via a simple magnetic-field-driven aqueous solution deposition process and then used as the electrode scaffold for the vapor-phase polymerization of 3,4-ethylenedioxythiophene (EDOT). Benefiting from the unique 3D open porous structure of the NNA that provided a highly conductive and oriented backbone for facile electron transfer and fast ion diffusion, the as-obtained poly(3,4-ethylenedioxythiophene) (PEDOT) exhibited an ultra-long cycle life (95.7% retention of specific capacitance after 20 000 charge/discharge cycles at 5 A/g) and superior capacitive performance. Furthermore, two electrodes were fabricated into an aqueous symmetric supercapacitor, which delivered a high energy density (30.38 Wh/kg at 529.49 W/kg) and superior long-term cycle ability (13.8% loss of capacity after 20 000 cycles). Based on these results, the vapor-phase polymerization of EDOT on metal nanowire array current collectors has great potential for use in supercapacitors with enhanced performance.
url http://europepmc.org/articles/PMC5115749?pdf=render
work_keys_str_mv AT qisenxie vaporphasepolymerizedpoly34ethylenedioxythiopheneonanickelnanowirearrayfilmaqueoussymmetricalpseudocapacitorswithsuperiorperformance
AT yangxu vaporphasepolymerizedpoly34ethylenedioxythiopheneonanickelnanowirearrayfilmaqueoussymmetricalpseudocapacitorswithsuperiorperformance
AT zhipengwang vaporphasepolymerizedpoly34ethylenedioxythiopheneonanickelnanowirearrayfilmaqueoussymmetricalpseudocapacitorswithsuperiorperformance
AT chaoxu vaporphasepolymerizedpoly34ethylenedioxythiopheneonanickelnanowirearrayfilmaqueoussymmetricalpseudocapacitorswithsuperiorperformance
AT peichaozou vaporphasepolymerizedpoly34ethylenedioxythiopheneonanickelnanowirearrayfilmaqueoussymmetricalpseudocapacitorswithsuperiorperformance
AT ziyinlin vaporphasepolymerizedpoly34ethylenedioxythiopheneonanickelnanowirearrayfilmaqueoussymmetricalpseudocapacitorswithsuperiorperformance
AT chenjiexu vaporphasepolymerizedpoly34ethylenedioxythiopheneonanickelnanowirearrayfilmaqueoussymmetricalpseudocapacitorswithsuperiorperformance
AT chengyang vaporphasepolymerizedpoly34ethylenedioxythiopheneonanickelnanowirearrayfilmaqueoussymmetricalpseudocapacitorswithsuperiorperformance
AT feiyukang vaporphasepolymerizedpoly34ethylenedioxythiopheneonanickelnanowirearrayfilmaqueoussymmetricalpseudocapacitorswithsuperiorperformance
AT chingpingwong vaporphasepolymerizedpoly34ethylenedioxythiopheneonanickelnanowirearrayfilmaqueoussymmetricalpseudocapacitorswithsuperiorperformance
_version_ 1725415404919062528