IMPROVED DEEP LEARNING ARCHITECTURE WITH BATCH NORMALIZATION FOR EEG SIGNAL PROCESSING
<p class="Abstract"><span lang="EN-US">Deep learning is commonly used to solve problems such as biomedical problems and many other problems. The most common architecture used to solve those problems is Convolutional Neural Network (CNN) architecture. However, CNN may...
Main Authors: | Adenuar Purnomo, Handayani Tjandrasa |
---|---|
Format: | Article |
Language: | English |
Published: |
Institut Teknologi Sepuluh Nopember
2021-01-01
|
Series: | JUTI: Jurnal Ilmiah Teknologi Informasi |
Online Access: | http://juti.if.its.ac.id/index.php/juti/article/view/1023 |
Similar Items
-
Epileptic Seizure Classification using Deep Batch Normalization Neural Network
by: Adenuar Purnomo, et al.
Published: (2020-12-01) -
Understanding deep learning decisions in EEG signals
by: Pedro Filipe Maia Dias
Published: (2021) -
KLASIFIKASI EEG EPILEPSI MENGGUNAKAN SINGULAR SPECTRUM ANALYSIS, POWER SPECTRAL DENSITY DAN CONVOLUTION NEURAL NETWORK
by: Nurseno Bayu Aji, et al.
Published: (2017-07-01) -
KLASIFIKASI AKTIVITAS MENTAL BERDASARKAN DATA EEG MENGGUNAKAN METODE HIBRIDNEURAL NETWORK DAN FUZZY PARTICLE SWARM OPTIMIZATION DENGAN CROSSMUTATED OPERATION
by: Stendy B. Sakur, et al.
Published: (2016-01-01) -
The Effect of Batch Normalization on Deep Convolutional Neural Networks
by: Schilling, Fabian
Published: (2016)