Path Planning of Unmanned Autonomous Helicopter Based on Human-Computer Hybrid Augmented Intelligence

Unmanned autonomous helicopter (UAH) path planning problem is an important component of the UAH mission planning system. The performance of the automatic path planner determines the quality of the UAH flight path. Aiming to produce a high-quality flight path, a path planning system is designed based...

Full description

Bibliographic Details
Main Authors: Zengliang Han, Mou Chen, Tongle Zhou, Zhiqiang Nie, Qingxian Wu
Format: Article
Language:English
Published: Hindawi Limited 2021-01-01
Series:Neural Plasticity
Online Access:http://dx.doi.org/10.1155/2021/6639664
Description
Summary:Unmanned autonomous helicopter (UAH) path planning problem is an important component of the UAH mission planning system. The performance of the automatic path planner determines the quality of the UAH flight path. Aiming to produce a high-quality flight path, a path planning system is designed based on human-computer hybrid augmented intelligence framework for the UAH in this paper. Firstly, an improved artificial bee colony (I-ABC) algorithm is proposed based on the dynamic evaluation selection strategy and the complex optimization method. In the I-ABC algorithm, the following way of on-looker bees and the update strategy of nectar source are optimized to accelerate the convergence rate and retain the exploration ability of the population. In addition, a space clipping operation is proposed based on the attention mechanism for constructing a new spatial search area. The search time can be further reduced by the space clipping operation under the path planning result within acceptable changes. Moreover, the entire optimization process and results can be feeded back to the knowledge database by the human-computer hybrid augmented intelligence framework to guide subsequent path planning issues. Finally, the simulation results confirm that a feasible and effective flight path can be quickly generated by the UAH path planning system based on human-computer hybrid augmented intelligence.
ISSN:2090-5904
1687-5443