Survival probability of stochastic processes beyond persistence exponents
The survival probability of a random walker is the probability that a particular target has not been reached by time t. Here the authors produce a formula for the prefactor involved in the expression of the survival probability which is shown to hold for both Markovian and non-Markovian processes.
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Publishing Group
2019-07-01
|
Series: | Nature Communications |
Online Access: | https://doi.org/10.1038/s41467-019-10841-6 |
id |
doaj-9aeb6d8782ee4b6ea00fd7c23c234714 |
---|---|
record_format |
Article |
spelling |
doaj-9aeb6d8782ee4b6ea00fd7c23c2347142021-05-11T12:29:21ZengNature Publishing GroupNature Communications2041-17232019-07-011011710.1038/s41467-019-10841-6Survival probability of stochastic processes beyond persistence exponentsN. Levernier0M. Dolgushev1O. Bénichou2R. Voituriez3T. Guérin4NCCR Chemical Biology, Departments of Biochemistry and Theoretical Physics, University of GenevaLaboratoire de Physique Théorique de la Matière Condensée, CNRS/Sorbonne Université, 4 Place JussieuLaboratoire de Physique Théorique de la Matière Condensée, CNRS/Sorbonne Université, 4 Place JussieuLaboratoire de Physique Théorique de la Matière Condensée, CNRS/Sorbonne Université, 4 Place JussieuLaboratoire Ondes et Matière d’Aquitaine, University of Bordeaux, Unité Mixte de Recherche 5798, CNRSThe survival probability of a random walker is the probability that a particular target has not been reached by time t. Here the authors produce a formula for the prefactor involved in the expression of the survival probability which is shown to hold for both Markovian and non-Markovian processes.https://doi.org/10.1038/s41467-019-10841-6 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
N. Levernier M. Dolgushev O. Bénichou R. Voituriez T. Guérin |
spellingShingle |
N. Levernier M. Dolgushev O. Bénichou R. Voituriez T. Guérin Survival probability of stochastic processes beyond persistence exponents Nature Communications |
author_facet |
N. Levernier M. Dolgushev O. Bénichou R. Voituriez T. Guérin |
author_sort |
N. Levernier |
title |
Survival probability of stochastic processes beyond persistence exponents |
title_short |
Survival probability of stochastic processes beyond persistence exponents |
title_full |
Survival probability of stochastic processes beyond persistence exponents |
title_fullStr |
Survival probability of stochastic processes beyond persistence exponents |
title_full_unstemmed |
Survival probability of stochastic processes beyond persistence exponents |
title_sort |
survival probability of stochastic processes beyond persistence exponents |
publisher |
Nature Publishing Group |
series |
Nature Communications |
issn |
2041-1723 |
publishDate |
2019-07-01 |
description |
The survival probability of a random walker is the probability that a particular target has not been reached by time t. Here the authors produce a formula for the prefactor involved in the expression of the survival probability which is shown to hold for both Markovian and non-Markovian processes. |
url |
https://doi.org/10.1038/s41467-019-10841-6 |
work_keys_str_mv |
AT nlevernier survivalprobabilityofstochasticprocessesbeyondpersistenceexponents AT mdolgushev survivalprobabilityofstochasticprocessesbeyondpersistenceexponents AT obenichou survivalprobabilityofstochasticprocessesbeyondpersistenceexponents AT rvoituriez survivalprobabilityofstochasticprocessesbeyondpersistenceexponents AT tguerin survivalprobabilityofstochasticprocessesbeyondpersistenceexponents |
_version_ |
1721444726044884992 |