Nestedness theory suggests wetland fragments with large areas and macrophyte diversity benefit waterbirds

Abstract Many artificial wetland constructions are currently underway worldwide to compensate for the degradation of natural wetland systems. Researchers face the responsibility of proposing wetland management and species protection strategies to ensure that constructed wetlands positively impact wa...

Full description

Bibliographic Details
Main Authors: Rongxing Wang, Xiaojun Yang
Format: Article
Language:English
Published: Wiley 2021-09-01
Series:Ecology and Evolution
Subjects:
Online Access:https://doi.org/10.1002/ece3.8009
Description
Summary:Abstract Many artificial wetland constructions are currently underway worldwide to compensate for the degradation of natural wetland systems. Researchers face the responsibility of proposing wetland management and species protection strategies to ensure that constructed wetlands positively impact waterbird diversity. Nestedness is a commonly occurring pattern for biotas in fragmented habitats with important implications for conservation; however, only a few studies have focused on seasonal waterbird communities in current artificial wetlands. In this study, we used the nestedness theory for analyzing the annual and seasonal community structures of waterbirds in artificial wetlands at Lake Dianchi (China) to suggest artificial wetland management and waterbird conservation strategies. We carried out three waterbird surveys per month for one year to observe the annual, spring, summer, autumn, and winter waterbird assemblages in 27 lakeside artificial wetland fragments. We used the NeD program to quantify nestedness patterns of waterbirds at the annual and seasonal levels. We also determined Spearman partial correlations to examine the associations of nestedness rank and habitat variables to explore the factors underlying nestedness patterns. We found that annual and all four seasonal waterbird compositions were nested, and selective extinction and habitat nestedness were the main factors governing nestedness. Further, selective colonization was the key driver of nestedness in autumn and winter waterbirds. We suggest that the area of wetland fragments should be as large as possible and that habitat heterogeneity should be maximized to fulfill the conservation needs of different seasonal waterbirds. Furthermore, we suggest that future studies should focus on the least area criterion and that vegetation management of artificial wetland construction should be based on the notion of sustainable development for humans and wildlife.
ISSN:2045-7758