Mineralized Granitic Porphyry of the Yangla Copper Deposit, Western Yunnan, China: Geochemistry of Fluid Inclusions and H-O, S, and Pb Isotopes

The Yangla copper deposit (YCD) is located in the central part of the Jinshajiang tectonic belt (Jinshajiang metallogenic belt) and is one of the most important copper deposits which has the large-scale copper reserves of the northwestern Yunnan, China. The ore bodies are strictly controlled by the...

Full description

Bibliographic Details
Main Authors: Xinfu Wang, Bo Li, ShenJin Guan, Olivier Nadeau, Guo Tang
Format: Article
Language:English
Published: Hindawi-Wiley 2020-01-01
Series:Geofluids
Online Access:http://dx.doi.org/10.1155/2020/4391703
id doaj-9ab89de411ae4f6d9f49262e90a5f1e5
record_format Article
spelling doaj-9ab89de411ae4f6d9f49262e90a5f1e52020-11-25T02:26:17ZengHindawi-WileyGeofluids1468-81151468-81232020-01-01202010.1155/2020/43917034391703Mineralized Granitic Porphyry of the Yangla Copper Deposit, Western Yunnan, China: Geochemistry of Fluid Inclusions and H-O, S, and Pb IsotopesXinfu Wang0Bo Li1ShenJin Guan2Olivier Nadeau3Guo Tang4Faculty of Land and Resource Engineering, Kunming University of Science and Technology, Wuhua, Kunming 650093, ChinaFaculty of Land and Resource Engineering, Kunming University of Science and Technology, Wuhua, Kunming 650093, ChinaFaculty of Land and Resource Engineering, Kunming University of Science and Technology, Wuhua, Kunming 650093, ChinaDepartment of Earth and Environmental Sciences, University of Ottawa, Ottawa, Ontario, CanadaFaculty of Land and Resource Engineering, Kunming University of Science and Technology, Wuhua, Kunming 650093, ChinaThe Yangla copper deposit (YCD) is located in the central part of the Jinshajiang tectonic belt (Jinshajiang metallogenic belt) and is one of the most important copper deposits which has the large-scale copper reserves of the northwestern Yunnan, China. The ore bodies are strictly controlled by the stratum, pluton, and structure, which are layered, lens, and vein-like within the contact or fracture zone of the pluton and surrounding rock. At Yangla, two styles of mineralization occur at the brecciated contact zone between the pluton (granodiorite and granitic porphyry) and carbonaceous wall rock and include strata bound/lens-shaped replacement of carbonate rocks (skarn style) and porphyry-style sulfide-quart-calcite veins. But, the granitic porphyry mineralization have received less attention; the isotope and fluid inclusion studies are relatively scarce for limited porphyry ore bodies that have been discovered at the YCD. Quartz-hosted fluid inclusions from the recently discovered granitic porphyry have homogenization temperature averaging around 180±20°C and 300±20°C with salinities ranging from 4 to 22 wt.% NaCleq, pointing toward the contribution of medium temperature-medium salinity and low temperature-low salinity fluids during the metallogenesis. These fluid inclusions have δ18OH2O values ranging between -1.91‰ and -1.02‰ and δD values ranging between -143.10‰ and -110‰, suggesting that the ore-forming fluid was a mix of magmatic and meteoric water. Ore-related pyrite/chalcopyrite have δ34SV-CDT values ranging from -1.0‰ to 1.0‰ and whole rocks have δ34SΣS = 0.34, suggesting that sulfur mainly derived from magmatic rocks of the Yangla mining area. The sulfides 208Pb/204Pb ranged from 38.8208-38.9969, 207Pb/204Pb from 15.7079-15.7357, and 206Pb/204Pb from 18.5363-18.7045, indicating that the lead mainly originated from the upper crust. It is demonstrated that the evolution of ore-forming fluid is continuous from the skarn ore body (SOB) stage to the porphyritic ore body stage and belong to the products of the same ore-forming fluid system, and the unisothermal mixing and cooling actions were maybe the main mechanism at the metallic minerals precipitation in mineralized granitic porphyry (MGP). A model is proposed according to the early stage, a magmatic fluid reacted and replaced with the surrounding carbonate rocks and then formed skarn-type ore bodies. The magmatic-hydrothermal fluid subsequently deposited porphyry-type quartz-calcite veins, veinlets, and stockwork mineralization.http://dx.doi.org/10.1155/2020/4391703
collection DOAJ
language English
format Article
sources DOAJ
author Xinfu Wang
Bo Li
ShenJin Guan
Olivier Nadeau
Guo Tang
spellingShingle Xinfu Wang
Bo Li
ShenJin Guan
Olivier Nadeau
Guo Tang
Mineralized Granitic Porphyry of the Yangla Copper Deposit, Western Yunnan, China: Geochemistry of Fluid Inclusions and H-O, S, and Pb Isotopes
Geofluids
author_facet Xinfu Wang
Bo Li
ShenJin Guan
Olivier Nadeau
Guo Tang
author_sort Xinfu Wang
title Mineralized Granitic Porphyry of the Yangla Copper Deposit, Western Yunnan, China: Geochemistry of Fluid Inclusions and H-O, S, and Pb Isotopes
title_short Mineralized Granitic Porphyry of the Yangla Copper Deposit, Western Yunnan, China: Geochemistry of Fluid Inclusions and H-O, S, and Pb Isotopes
title_full Mineralized Granitic Porphyry of the Yangla Copper Deposit, Western Yunnan, China: Geochemistry of Fluid Inclusions and H-O, S, and Pb Isotopes
title_fullStr Mineralized Granitic Porphyry of the Yangla Copper Deposit, Western Yunnan, China: Geochemistry of Fluid Inclusions and H-O, S, and Pb Isotopes
title_full_unstemmed Mineralized Granitic Porphyry of the Yangla Copper Deposit, Western Yunnan, China: Geochemistry of Fluid Inclusions and H-O, S, and Pb Isotopes
title_sort mineralized granitic porphyry of the yangla copper deposit, western yunnan, china: geochemistry of fluid inclusions and h-o, s, and pb isotopes
publisher Hindawi-Wiley
series Geofluids
issn 1468-8115
1468-8123
publishDate 2020-01-01
description The Yangla copper deposit (YCD) is located in the central part of the Jinshajiang tectonic belt (Jinshajiang metallogenic belt) and is one of the most important copper deposits which has the large-scale copper reserves of the northwestern Yunnan, China. The ore bodies are strictly controlled by the stratum, pluton, and structure, which are layered, lens, and vein-like within the contact or fracture zone of the pluton and surrounding rock. At Yangla, two styles of mineralization occur at the brecciated contact zone between the pluton (granodiorite and granitic porphyry) and carbonaceous wall rock and include strata bound/lens-shaped replacement of carbonate rocks (skarn style) and porphyry-style sulfide-quart-calcite veins. But, the granitic porphyry mineralization have received less attention; the isotope and fluid inclusion studies are relatively scarce for limited porphyry ore bodies that have been discovered at the YCD. Quartz-hosted fluid inclusions from the recently discovered granitic porphyry have homogenization temperature averaging around 180±20°C and 300±20°C with salinities ranging from 4 to 22 wt.% NaCleq, pointing toward the contribution of medium temperature-medium salinity and low temperature-low salinity fluids during the metallogenesis. These fluid inclusions have δ18OH2O values ranging between -1.91‰ and -1.02‰ and δD values ranging between -143.10‰ and -110‰, suggesting that the ore-forming fluid was a mix of magmatic and meteoric water. Ore-related pyrite/chalcopyrite have δ34SV-CDT values ranging from -1.0‰ to 1.0‰ and whole rocks have δ34SΣS = 0.34, suggesting that sulfur mainly derived from magmatic rocks of the Yangla mining area. The sulfides 208Pb/204Pb ranged from 38.8208-38.9969, 207Pb/204Pb from 15.7079-15.7357, and 206Pb/204Pb from 18.5363-18.7045, indicating that the lead mainly originated from the upper crust. It is demonstrated that the evolution of ore-forming fluid is continuous from the skarn ore body (SOB) stage to the porphyritic ore body stage and belong to the products of the same ore-forming fluid system, and the unisothermal mixing and cooling actions were maybe the main mechanism at the metallic minerals precipitation in mineralized granitic porphyry (MGP). A model is proposed according to the early stage, a magmatic fluid reacted and replaced with the surrounding carbonate rocks and then formed skarn-type ore bodies. The magmatic-hydrothermal fluid subsequently deposited porphyry-type quartz-calcite veins, veinlets, and stockwork mineralization.
url http://dx.doi.org/10.1155/2020/4391703
work_keys_str_mv AT xinfuwang mineralizedgraniticporphyryoftheyanglacopperdepositwesternyunnanchinageochemistryoffluidinclusionsandhosandpbisotopes
AT boli mineralizedgraniticporphyryoftheyanglacopperdepositwesternyunnanchinageochemistryoffluidinclusionsandhosandpbisotopes
AT shenjinguan mineralizedgraniticporphyryoftheyanglacopperdepositwesternyunnanchinageochemistryoffluidinclusionsandhosandpbisotopes
AT oliviernadeau mineralizedgraniticporphyryoftheyanglacopperdepositwesternyunnanchinageochemistryoffluidinclusionsandhosandpbisotopes
AT guotang mineralizedgraniticporphyryoftheyanglacopperdepositwesternyunnanchinageochemistryoffluidinclusionsandhosandpbisotopes
_version_ 1715487187492929536