Existence and Uniqueness of Mild Solutions to Impulsive Nonlocal Cauchy Problems
In this paper, a class of nonlocal impulsive differential equation with conformable fractional derivative is studied. By utilizing the theory of operators semigroup and fractional derivative, a new concept on a solution for our problem is introduced. We used some fixed point theorems such as Banach...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2020-01-01
|
Series: | Journal of Mathematics |
Online Access: | http://dx.doi.org/10.1155/2020/5729128 |
Summary: | In this paper, a class of nonlocal impulsive differential equation with conformable fractional derivative is studied. By utilizing the theory of operators semigroup and fractional derivative, a new concept on a solution for our problem is introduced. We used some fixed point theorems such as Banach contraction mapping principle, Schauder’s fixed point theorem, Schaefer’s fixed point theorem, and Krasnoselskii’s fixed point theorem, and we derive many existence and uniqueness results concerning the solution for impulsive nonlocal Cauchy problems. Some concrete applications to partial differential equations are considered. Some concrete applications to partial differential equations are considered. |
---|---|
ISSN: | 2314-4629 2314-4785 |