Size Matters: The Impact of Training Size in Taxonomically-Enriched Word Embeddings
Word embeddings trained on natural corpora (e.g., newspaper collections, Wikipedia or the Web) excel in capturing thematic similarity (“topical relatedness”) on word pairs such as ‘coffee’ and ‘cup’ or ’bus’ and ‘road’. However, they are less successful on pairs showing taxonomic similarity, like ‘c...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
De Gruyter
2019-10-01
|
Series: | Open Computer Science |
Subjects: | |
Online Access: | https://doi.org/10.1515/comp-2019-0009 |
id |
doaj-9a8eb5b941bc4dce88079bf39a783089 |
---|---|
record_format |
Article |
spelling |
doaj-9a8eb5b941bc4dce88079bf39a7830892021-09-06T19:19:42ZengDe GruyterOpen Computer Science2299-10932019-10-019125226710.1515/comp-2019-0009comp-2019-0009Size Matters: The Impact of Training Size in Taxonomically-Enriched Word EmbeddingsMaldonado Alfredo0Klubička Filip1Kelleher John2ADAPT Centre at Trinity College Dublin, Dublin, IrelandADAPT Centre at Technological University Dublin, Dublin, IrelandADAPT Centre at Technological University Dublin, Dublin, IrelandWord embeddings trained on natural corpora (e.g., newspaper collections, Wikipedia or the Web) excel in capturing thematic similarity (“topical relatedness”) on word pairs such as ‘coffee’ and ‘cup’ or ’bus’ and ‘road’. However, they are less successful on pairs showing taxonomic similarity, like ‘cup’ and ‘mug’ (near synonyms) or ‘bus’ and ‘train’ (types of public transport). Moreover, purely taxonomy-based embeddings (e.g. those trained on a random-walk of WordNet’s structure) outperform natural-corpus embeddings in taxonomic similarity but underperform them in thematic similarity. Previous work suggests that performance gains in both types of similarity can be achieved by enriching natural-corpus embeddings with taxonomic information from taxonomies like Word-Net. This taxonomic enrichment can be done by combining natural-corpus embeddings with taxonomic embeddings (e.g. those trained on a random-walk of WordNet’s structure). This paper conducts a deep analysis of this assumption and shows that both the size of the natural corpus and of the random-walk coverage of the WordNet structure play a crucial role in the performance of combined (enriched) vectors in both similarity tasks. Specifically, we show that embeddings trained on medium-sized natural corpora benefit the most from taxonomic enrichment whilst embeddings trained on large natural corpora only benefit from this enrichment when evaluated on taxonomic similarity tasks. The implication of this is that care has to be taken in controlling the size of the natural corpus and the size of the random-walk used to train vectors. In addition, we find that, whilst the WordNet structure is finite and it is possible to fully traverse it in a single pass, the repetition of well-connected WordNet concepts in extended random-walks effectively reinforces taxonomic relations in the learned embeddings.https://doi.org/10.1515/comp-2019-0009word embeddingstaxonomic embeddingswordnetsemantic similaritytaxonomic enrichmentretrofitting |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Maldonado Alfredo Klubička Filip Kelleher John |
spellingShingle |
Maldonado Alfredo Klubička Filip Kelleher John Size Matters: The Impact of Training Size in Taxonomically-Enriched Word Embeddings Open Computer Science word embeddings taxonomic embeddings wordnet semantic similarity taxonomic enrichment retrofitting |
author_facet |
Maldonado Alfredo Klubička Filip Kelleher John |
author_sort |
Maldonado Alfredo |
title |
Size Matters: The Impact of Training Size in Taxonomically-Enriched Word Embeddings |
title_short |
Size Matters: The Impact of Training Size in Taxonomically-Enriched Word Embeddings |
title_full |
Size Matters: The Impact of Training Size in Taxonomically-Enriched Word Embeddings |
title_fullStr |
Size Matters: The Impact of Training Size in Taxonomically-Enriched Word Embeddings |
title_full_unstemmed |
Size Matters: The Impact of Training Size in Taxonomically-Enriched Word Embeddings |
title_sort |
size matters: the impact of training size in taxonomically-enriched word embeddings |
publisher |
De Gruyter |
series |
Open Computer Science |
issn |
2299-1093 |
publishDate |
2019-10-01 |
description |
Word embeddings trained on natural corpora (e.g., newspaper collections, Wikipedia or the Web) excel in capturing thematic similarity (“topical relatedness”) on word pairs such as ‘coffee’ and ‘cup’ or ’bus’ and ‘road’. However, they are less successful on pairs showing taxonomic similarity, like ‘cup’ and ‘mug’ (near synonyms) or ‘bus’ and ‘train’ (types of public transport). Moreover, purely taxonomy-based embeddings (e.g. those trained on a random-walk of WordNet’s structure) outperform natural-corpus embeddings in taxonomic similarity but underperform them in thematic similarity. Previous work suggests that performance gains in both types of similarity can be achieved by enriching natural-corpus embeddings with taxonomic information from taxonomies like Word-Net. This taxonomic enrichment can be done by combining natural-corpus embeddings with taxonomic embeddings (e.g. those trained on a random-walk of WordNet’s structure). This paper conducts a deep analysis of this assumption and shows that both the size of the natural corpus and of the random-walk coverage of the WordNet structure play a crucial role in the performance of combined (enriched) vectors in both similarity tasks. Specifically, we show that embeddings trained on medium-sized natural corpora benefit the most from taxonomic enrichment whilst embeddings trained on large natural corpora only benefit from this enrichment when evaluated on taxonomic similarity tasks. The implication of this is that care has to be taken in controlling the size of the natural corpus and the size of the random-walk used to train vectors. In addition, we find that, whilst the WordNet structure is finite and it is possible to fully traverse it in a single pass, the repetition of well-connected WordNet concepts in extended random-walks effectively reinforces taxonomic relations in the learned embeddings. |
topic |
word embeddings taxonomic embeddings wordnet semantic similarity taxonomic enrichment retrofitting |
url |
https://doi.org/10.1515/comp-2019-0009 |
work_keys_str_mv |
AT maldonadoalfredo sizematterstheimpactoftrainingsizeintaxonomicallyenrichedwordembeddings AT klubickafilip sizematterstheimpactoftrainingsizeintaxonomicallyenrichedwordembeddings AT kelleherjohn sizematterstheimpactoftrainingsizeintaxonomicallyenrichedwordembeddings |
_version_ |
1717777977302843392 |