Integrable Deformations and Dynamical Properties of Systems with Constant Population
In this paper we consider systems of three autonomous first-order differential equations <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mover accent="true"><mi mathvariant="bold&q...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-06-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/9/12/1378 |
id |
doaj-9a8c8a994dba4e88a09f2f6910a4a1ba |
---|---|
record_format |
Article |
spelling |
doaj-9a8c8a994dba4e88a09f2f6910a4a1ba2021-07-01T00:08:22ZengMDPI AGMathematics2227-73902021-06-0191378137810.3390/math9121378Integrable Deformations and Dynamical Properties of Systems with Constant PopulationCristian Lăzureanu0Department of Mathematics, Politehnica University of Timişoara, Piața Victoriei 2, 300006 Timișoara, RomaniaIn this paper we consider systems of three autonomous first-order differential equations <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mover accent="true"><mi mathvariant="bold">x</mi><mo>˙</mo></mover><mo>=</mo><mi mathvariant="bold">f</mi><mrow><mo>(</mo><mi mathvariant="bold">x</mi><mo>)</mo></mrow><mo>,</mo></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="bold">x</mi><mo>=</mo><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>z</mi><mo>)</mo></mrow><mo>,</mo><mi mathvariant="bold">f</mi><mo>=</mo><mrow><mo>(</mo><msub><mi>f</mi><mn>1</mn></msub><mo>,</mo><msub><mi>f</mi><mn>2</mn></msub><mo>,</mo><msub><mi>f</mi><mn>3</mn></msub><mo>)</mo></mrow></mrow></semantics></math></inline-formula> such that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>x</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>+</mo><mi>y</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>+</mo><mi>z</mi><mo>(</mo><mi>t</mi><mo>)</mo></mrow></semantics></math></inline-formula> is constant for all <i>t</i>. We present some Hamilton–Poisson formulations and integrable deformations. We also analyze the case of Kolmogorov systems. We study from some standard and nonstandard Poisson geometry points of view the three-dimensional Lotka–Volterra system with constant population.https://www.mdpi.com/2227-7390/9/12/1378Hamilton–Poisson systemsintegrable deformationsLotka–Volterra systemsKolmogorov systemsstabilityperiodic orbits |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Cristian Lăzureanu |
spellingShingle |
Cristian Lăzureanu Integrable Deformations and Dynamical Properties of Systems with Constant Population Mathematics Hamilton–Poisson systems integrable deformations Lotka–Volterra systems Kolmogorov systems stability periodic orbits |
author_facet |
Cristian Lăzureanu |
author_sort |
Cristian Lăzureanu |
title |
Integrable Deformations and Dynamical Properties of Systems with Constant Population |
title_short |
Integrable Deformations and Dynamical Properties of Systems with Constant Population |
title_full |
Integrable Deformations and Dynamical Properties of Systems with Constant Population |
title_fullStr |
Integrable Deformations and Dynamical Properties of Systems with Constant Population |
title_full_unstemmed |
Integrable Deformations and Dynamical Properties of Systems with Constant Population |
title_sort |
integrable deformations and dynamical properties of systems with constant population |
publisher |
MDPI AG |
series |
Mathematics |
issn |
2227-7390 |
publishDate |
2021-06-01 |
description |
In this paper we consider systems of three autonomous first-order differential equations <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mover accent="true"><mi mathvariant="bold">x</mi><mo>˙</mo></mover><mo>=</mo><mi mathvariant="bold">f</mi><mrow><mo>(</mo><mi mathvariant="bold">x</mi><mo>)</mo></mrow><mo>,</mo></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="bold">x</mi><mo>=</mo><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>z</mi><mo>)</mo></mrow><mo>,</mo><mi mathvariant="bold">f</mi><mo>=</mo><mrow><mo>(</mo><msub><mi>f</mi><mn>1</mn></msub><mo>,</mo><msub><mi>f</mi><mn>2</mn></msub><mo>,</mo><msub><mi>f</mi><mn>3</mn></msub><mo>)</mo></mrow></mrow></semantics></math></inline-formula> such that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>x</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>+</mo><mi>y</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>+</mo><mi>z</mi><mo>(</mo><mi>t</mi><mo>)</mo></mrow></semantics></math></inline-formula> is constant for all <i>t</i>. We present some Hamilton–Poisson formulations and integrable deformations. We also analyze the case of Kolmogorov systems. We study from some standard and nonstandard Poisson geometry points of view the three-dimensional Lotka–Volterra system with constant population. |
topic |
Hamilton–Poisson systems integrable deformations Lotka–Volterra systems Kolmogorov systems stability periodic orbits |
url |
https://www.mdpi.com/2227-7390/9/12/1378 |
work_keys_str_mv |
AT cristianlazureanu integrabledeformationsanddynamicalpropertiesofsystemswithconstantpopulation |
_version_ |
1721349477474762752 |