Integrable Deformations and Dynamical Properties of Systems with Constant Population

In this paper we consider systems of three autonomous first-order differential equations <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mover accent="true"><mi mathvariant="bold&q...

Full description

Bibliographic Details
Main Author: Cristian Lăzureanu
Format: Article
Language:English
Published: MDPI AG 2021-06-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/9/12/1378
id doaj-9a8c8a994dba4e88a09f2f6910a4a1ba
record_format Article
spelling doaj-9a8c8a994dba4e88a09f2f6910a4a1ba2021-07-01T00:08:22ZengMDPI AGMathematics2227-73902021-06-0191378137810.3390/math9121378Integrable Deformations and Dynamical Properties of Systems with Constant PopulationCristian Lăzureanu0Department of Mathematics, Politehnica University of Timişoara, Piața Victoriei 2, 300006 Timișoara, RomaniaIn this paper we consider systems of three autonomous first-order differential equations <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mover accent="true"><mi mathvariant="bold">x</mi><mo>˙</mo></mover><mo>=</mo><mi mathvariant="bold">f</mi><mrow><mo>(</mo><mi mathvariant="bold">x</mi><mo>)</mo></mrow><mo>,</mo></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="bold">x</mi><mo>=</mo><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>z</mi><mo>)</mo></mrow><mo>,</mo><mi mathvariant="bold">f</mi><mo>=</mo><mrow><mo>(</mo><msub><mi>f</mi><mn>1</mn></msub><mo>,</mo><msub><mi>f</mi><mn>2</mn></msub><mo>,</mo><msub><mi>f</mi><mn>3</mn></msub><mo>)</mo></mrow></mrow></semantics></math></inline-formula> such that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>x</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>+</mo><mi>y</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>+</mo><mi>z</mi><mo>(</mo><mi>t</mi><mo>)</mo></mrow></semantics></math></inline-formula> is constant for all <i>t</i>. We present some Hamilton–Poisson formulations and integrable deformations. We also analyze the case of Kolmogorov systems. We study from some standard and nonstandard Poisson geometry points of view the three-dimensional Lotka–Volterra system with constant population.https://www.mdpi.com/2227-7390/9/12/1378Hamilton–Poisson systemsintegrable deformationsLotka–Volterra systemsKolmogorov systemsstabilityperiodic orbits
collection DOAJ
language English
format Article
sources DOAJ
author Cristian Lăzureanu
spellingShingle Cristian Lăzureanu
Integrable Deformations and Dynamical Properties of Systems with Constant Population
Mathematics
Hamilton–Poisson systems
integrable deformations
Lotka–Volterra systems
Kolmogorov systems
stability
periodic orbits
author_facet Cristian Lăzureanu
author_sort Cristian Lăzureanu
title Integrable Deformations and Dynamical Properties of Systems with Constant Population
title_short Integrable Deformations and Dynamical Properties of Systems with Constant Population
title_full Integrable Deformations and Dynamical Properties of Systems with Constant Population
title_fullStr Integrable Deformations and Dynamical Properties of Systems with Constant Population
title_full_unstemmed Integrable Deformations and Dynamical Properties of Systems with Constant Population
title_sort integrable deformations and dynamical properties of systems with constant population
publisher MDPI AG
series Mathematics
issn 2227-7390
publishDate 2021-06-01
description In this paper we consider systems of three autonomous first-order differential equations <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mover accent="true"><mi mathvariant="bold">x</mi><mo>˙</mo></mover><mo>=</mo><mi mathvariant="bold">f</mi><mrow><mo>(</mo><mi mathvariant="bold">x</mi><mo>)</mo></mrow><mo>,</mo></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="bold">x</mi><mo>=</mo><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>z</mi><mo>)</mo></mrow><mo>,</mo><mi mathvariant="bold">f</mi><mo>=</mo><mrow><mo>(</mo><msub><mi>f</mi><mn>1</mn></msub><mo>,</mo><msub><mi>f</mi><mn>2</mn></msub><mo>,</mo><msub><mi>f</mi><mn>3</mn></msub><mo>)</mo></mrow></mrow></semantics></math></inline-formula> such that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>x</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>+</mo><mi>y</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>+</mo><mi>z</mi><mo>(</mo><mi>t</mi><mo>)</mo></mrow></semantics></math></inline-formula> is constant for all <i>t</i>. We present some Hamilton–Poisson formulations and integrable deformations. We also analyze the case of Kolmogorov systems. We study from some standard and nonstandard Poisson geometry points of view the three-dimensional Lotka–Volterra system with constant population.
topic Hamilton–Poisson systems
integrable deformations
Lotka–Volterra systems
Kolmogorov systems
stability
periodic orbits
url https://www.mdpi.com/2227-7390/9/12/1378
work_keys_str_mv AT cristianlazureanu integrabledeformationsanddynamicalpropertiesofsystemswithconstantpopulation
_version_ 1721349477474762752