Multiresolution Expansion and Approximation Order of Generalized Tempered Distributions

Let be the generalized tempered distributions of -growth with restricted order , where the function grows faster than any linear functions as . We show the convergence of multiresolution expansions of in the test function space of . In addition, we show that the kernel of an integral operator p...

Full description

Bibliographic Details
Main Author: Byung Keun Sohn
Format: Article
Language:English
Published: Hindawi Limited 2013-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/2013/190981
Description
Summary:Let be the generalized tempered distributions of -growth with restricted order , where the function grows faster than any linear functions as . We show the convergence of multiresolution expansions of in the test function space of . In addition, we show that the kernel of an integral operator provides approximation order in in the context of shift-invariant spaces.
ISSN:0161-1712
1687-0425